1,325 research outputs found

    Influence of Joshi Effect on the Emission Spectrum of Chlorine

    Get PDF

    Influence of the Electrode-Surface on the Joshi-Effect in Chlorine

    Get PDF

    Influence of the Intensity of Irradiation on the New Light-Effect in Chlorine Under Electrical Discharge

    Get PDF
    General conditions for the production of a new light-effect, viz., a photo-diminution of the conductivity in chlorine subjected to electrical discharge, arc indicated. The effect increases by Increasing the frequency of irradiation, the violet being most active, which happens to be the region of absorption by chlorine. In agreement with Joshi's views, who regards this phenomenon as distinct from a negative photo-electric effect, the influence of the light-intensity on the effect is not linear

    Persistent currents in coupled mesoscopic rings

    Get PDF
    We have analysed the nature of persistent currents in open coupled mesoscopic rings. Our system is comprised of two ideal loops connected to an electron reservoir. We have obtained analytical expressions for the persistent current densities in two rings in the presence of a magnetic field. We show that the known even-odd parity effects in isolated single loops have to be generalised for the case of coupled rings. We also show that when the two rings have unequal circumferences, it is possible to observe opposite currents (diamagnetic or paramagnetic) in the two rings for a given Fermi level.Comment: Submitted to PRB. 9 figures availabel on reques

    Heat Capacity of Mesoscopic Superconducting Disks

    Full text link
    We study the heat capacity of isolated giant vortex states, which are good angular momentum (LL) states, in a mesoscopic superconducting disk using the Ginzburg-Landau (GL) theory. At small magnetic fields the LL=0 state qualitatively behaves like the bulk sample characterized by a discontinuity in heat capacity at TcT_c. As the field is increased the discontinuity slowly turns into a continuous change which is a finite size effect. The higher LL states show a continuous change in heat capacity at TcT_c at all fields. We also show that for these higher LL states, the behavior of the peak position with change in field is related to the paramagnetic Meissner effect (irreversible) and can lead to an unambiguous observation of positive magnetization in mesoscopic superconductors.Comment: Final versio

    Vortex phase diagram for mesoscopic superconducting disks

    Full text link
    Solving numerically the 3D non linear Ginzburg-Landau (GL) equations, we study equilibrium and nonequilibrium phase transitions between different superconducting states of mesoscopic disks which are thinner than the coherence length and the penetration depth. We have found a smooth transition from a multi-vortex superconducting state to a giant vortex state with increasing both the disk thickness and the magnetic field. A vortex phase diagram is obtained which shows, as function of the magnetic field, a re-entrant behavior between the multi-vortex and the giant vortex state.Comment: 5 figures (post script files) include

    Friedel phases and phases of transmission amplitudes in quantum scattering systems

    Full text link
    We illustrate the relation between the scattering phase appearing in the Friedel sum rule and the phase of the transmission amplitude for quantum scatterers connected to two one-dimensional leads. Transmission zero points cause abrupt phase changes ±π\pm\pi of the phase of the transmission amplitude. In contrast the Friedel phase is a continuous function of energy. We investigate these scattering phases for simple scattering problems and illustrate the behavior of these models by following the path of the transmission amplitude in the complex plane as a function of energy. We verify the Friedel sum rule for these models by direct calculation of the scattering phases and by direct calculation of the density of states.Comment: 12 pages, 12 figure

    Persistent Currents in the Presence of a Transport Current

    Get PDF
    We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in the presence of a transport current, the persistent current can flow in a ring, even in the absence of magnetic field. This is purely a quantum effect and is related to the current magnification in the loop. These persistent currents can be observed if one tunes the Fermi energy near the antiresonances of the total transmission coefficient or the two port conductance.Comment: To appear in Phys. Rev. B. Three figures available on reques

    Regular networks of Luttinger liquids

    Full text link
    We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to several semi-infinite 1D wires. The main difference between the single node geometry and a regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should exhibit power-law suppression of the conductivity at low temperatures E_{F}/(k_{F}a) > 1. Some fully insulating ground-states are expected only for a discrete set of integer filling factors for the electronic system. A detailed discussion of the scattering matrix flow and its implication for the low energy band structure is given on the example of a square lattice.Comment: 16 pages, 7 figure

    Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier

    Full text link
    The magnetization behavior of mesoscopic superconducting disks can show hysteretic behavior which we explain by using the Ginzburg-Landau (GL) theory and properly taking into account the de-magnetization effects due to geometrical form factors. In large disks the Bean-Livingston surface barrier is responsible for the hysteresis. While in small disks a volume barrier is responsible for this hysteresis. It is shown that although the sample magnetization is diamagnetic (negative), the measured magnetization can be positive at certain fields as observed experimentally, which is a consequence of the de-magnetization effects and the experimental set up.Comment: Latex file, 4 ps file
    corecore