515 research outputs found

    Quantum information analysis of electronic states at different molecular structures

    Full text link
    We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization. We also discuss the application of the configuration interaction based dynamically extended active space procedure which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures to a great extent. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal orbital ordering and carry out efficient calculations on transition metal clusters. We propose a recipe to perform DMRG calculations in a black-box fashion and we point out the connections of our work to other tensor network state approaches

    Giant resistance change across the phase transition in spin crossover molecules

    Full text link
    The electronic origin of a large resistance change in nanoscale junctions incorporating spin crossover molecules is demonstrated theoretically by using a combination of density functional theory and the non-equilibrium Green's functions method for quantum transport. At the spin crossover phase transition there is a drastic change in the electronic gap between the frontier molecular orbitals. As a consequence, when the molecule is incorporated in a two terminal device, the current increases by up to four orders of magnitude in response to the spin change. This is equivalent to a magnetoresistance effect in excess of 3,000 %. Since the typical phase transition critical temperature for spin crossover compounds can be extended to well above room temperature, spin crossover molecules appear as the ideal candidate for implementing spin devices at the molecular level

    Electric field control of valence tautomeric interconversion in Cobalt dioxolene

    Full text link
    We demonstrate that the critical temperature for valence tautomeric interconversion in Cobalt dioxolene complexes can be significantly changed when a static electric field is applied to the molecule. This is achieved by effectively manipulating the redox potential of the metallic acceptor forming the molecule. Importantly our accurate density functional theory calculations demonstrate that already a field of 0.1 V/nm, achievable in Stark spectroscopy experiments, can produce a change in the critical temperature for the interconversion of 20 K. Our results indicate a new way for switching on and off the magnetism in a magnetic molecule. This offers the unique chance of controlling magnetism at the atomic scale by electrical means

    Luminescence degradation behavior of alumina irradiated with heavy ions of high fluences

    Get PDF

    The ground state of a spin-crossover molecule calculated by diffusion Monte Carlo

    Get PDF
    Spin crossover molecules have recently emerged as a family of compounds potentially useful for implementing molecular spintronics devices. The calculations of the electronic properties of such molecules is a formidable theoretical challenge as one has to describe the spin ground state of a transition metal as the legand field changes. The problem is dominated by the interplay between strong electron correlation at the transition metal site and charge delocalization over the ligands, and thus it fits into a class of problems where density functional theory may be inadequate. Furthermore, the crossover activity is extremely sensitive to environmental conditions, which are difficult to fully characterize. Here we discuss the phase transition of a prototypical spin crossover molecule as obtained with diffusion Monte Carlo simulations. We demonstrate that the ground state changes depending on whether the molecule is in the gas or in the solid phase. As our calculation provides a solid benchmark for the theory we then assess the performances of density functional theory. We find that the low spin state is always over-stabilized, not only by the (semi-)local functionals, but even by the most commonly used hybrids (such as B3LYP and PBE0). We then propose that reliable results can be obtained by using hybrid functionals containing about 50% of exact-exchange

    Radiation Damage in Alumina irradiated with heavy Ions of high Fluences

    Get PDF

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table

    Interplay between lattice, orbital, and magnetic degrees of freedom in the chain-polymer Cu(II) breathing crystals

    Full text link
    The chain-polymer Cu(II) breathing crystals C21H19CuF12N4O6 were studied using the x-ray diffraction and ab initio band structure calculations. We show that the crystal structure modification at T=146 K, associated with the spin crossover transition, induces the changes of the orbital order in half of the Cu sites. This in turn results in the switch of the magnetic interaction sign in accordance with the Goodenough-Kanamori-Andersen theory of the coupling between the orbital and spin degrees of freedom.Comment: 6 pages, 7 figure

    Photoinduced magnetism and random magnetic anisotropy in organic-based magnetic semiconductor V(TCNE)(x) films, for x similar to 2

    Get PDF
    The V(TCNE)(x), x similar to 2 is an organic-based amorphous ferrimagnet, whose magnetic behavior is significantly affected in the low field regime by the random magnetic anisotropy. It was determined that this material has thermally reversible persistent change in both magnetization and conductivity driven by the optical excitation. Here, we report results of a ferrimagnetic resonance study of the photoinduced magnetism in V(TCNE)(x) film. Upon optical excitation (lambda similar to 457.9 nm), the ferrimagnetic resonance spectra display substantial changes in their linewidths and line shifts, which reflect a substantial increase in the random magnetic anistropy. The results reflect the role of magnetic anisotropy in disordered magnets and suggest a novel mechanism of photoinduced magnetism in V(TCNE)(x) induced by the increased structural disorder in the system.open201
    corecore