115 research outputs found

    The Application of Basic Communication Skills to Higher Education Administration

    Get PDF
    Communication skills are a core requirement for administrators in higher education. Evidence for this proposition can be found in the job announcements for administrators and in the conferences they attend. The Council of Colleges of Arts and Sciences’ (CCAS) annual conference is a place for deans and other administrators from around the country to gather to work on becoming better at “deaning.” For the past few years, a pre-conference workshop titled “Conflict Management for Deans,” has been offered, and serves as a perfect example of the importance of our discipline to higher education administration. In a quick review of the job advertisements in the Chronicle of Higher Education, it easily becomes clear that “communication skills” are a basic requirement for most leadership positions in higher education. Here, we take that notion one step further by discussing some specific communication concepts, theories, and strategies that reflect those skills and that show the significance of effective communication in higher education administration. We focus on five areas of communication and how they have impacted our transitions into administration: presentation skills, interpersonal skills, small group skills, affinity-seeking behaviors, and listening

    Cell morphology governs directional control in swimming bacteria

    Get PDF
    The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology

    Quantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time

    Get PDF
    Escherichia coli chemotactic motion in spatiotemporally varying environments is studied by using a computational model based on a coarse-grained description of the intracellular signaling pathway dynamics. We find that the cell's chemotaxis drift velocity vd is a constant in an exponential attractant concentration gradient [L]∝exp(Gx). vd depends linearly on the exponential gradient G before it saturates when G is larger than a critical value GC. We find that GC is determined by the intracellular adaptation rate kR with a simple scaling law: . The linear dependence of vd on G = d(ln[L])/dx directly demonstrates E. coli's ability in sensing the derivative of the logarithmic attractant concentration. The existence of the limiting gradient GC and its scaling with kR are explained by the underlying intracellular adaptation dynamics and the flagellar motor response characteristics. For individual cells, we find that the overall average run length in an exponential gradient is longer than that in a homogeneous environment, which is caused by the constant kinase activity shift (decrease). The forward runs (up the gradient) are longer than the backward runs, as expected; and depending on the exact gradient, the (shorter) backward runs can be comparable to runs in a spatially homogeneous environment, consistent with previous experiments. In (spatial) ligand gradients that also vary in time, the chemotaxis motion is damped as the frequency ω of the time-varying spatial gradient becomes faster than a critical value ωc, which is controlled by the cell's chemotaxis adaptation rate kR. Finally, our model, with no adjustable parameters, agrees quantitatively with the classical capillary assay experiments where the attractant concentration changes both in space and time. Our model can thus be used to study E. coli chemotaxis behavior in arbitrary spatiotemporally varying environments. Further experiments are suggested to test some of the model predictions

    Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    Get PDF
    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species

    Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms

    Get PDF
    Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation — despite the absence of cell reproduction — and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments — the rule rather than the exception outside the laboratory

    On the Trail of Bioremediating Microbes

    No full text

    Three-dimensional tracking of motile bacteria near a solid planar surface.

    No full text
    corecore