2,109 research outputs found
Fabrication and characterization of hot- pressed tantalum carbide
Microstructure and chemistry of hot pressed powder compacts of tantalum carbid
The flavour projection of staggered fermions and the quarter-root trick
It is shown that the flavour projection of staggered fermions can be written
as a projection between the fields on four separate, but parallel, lattices,
where the fields on each are modified forms of the standard staggered fermion
field. Because the staggered Dirac operator acts equally on each lattice, it
respects this flavour projection. We show that the system can be gauged in the
usual fashion and that this does not interfere with flavour projection. We also
consider the path integral, showing that, prior to flavour projection, it
evaluates to the same form on each lattice and that this form is equal to that
used in the quarter-root trick. The flavour projection leaves a path integral
for a single flavour of field on each lattice.Comment: 8 pages, including title pag
Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet on the Honeycomb Lattice
Based on a symmetry analysis of the microscopic Hubbard and t-J models, a
systematic low-energy effective field theory is constructed for hole-doped
antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase,
doped holes are massive due to the spontaneous breakdown of the
symmetry, just as nucleons in QCD pick up their mass from spontaneous chiral
symmetry breaking. In the broken phase the effective action contains a
single-derivative term, similar to the Shraiman-Siggia term in the square
lattice case. Interestingly, an accidental continuous spatial rotation symmetry
arises at leading order. As an application of the effective field theory we
consider one-magnon exchange between two holes and the formation of two-hole
bound states. As an unambiguous prediction of the effective theory, the wave
function for the ground state of two holes bound by magnon exchange exhibits
-wave symmetry.Comment: 33 pages, 6 figure
Microscopic Model versus Systematic Low-Energy Effective Field Theory for a Doped Quantum Ferromagnet
We consider a microscopic model for a doped quantum ferromagnet as a test
case for the systematic low-energy effective field theory for magnons and
holes, which is constructed in complete analogy to the case of quantum
antiferromagnets. In contrast to antiferromagnets, for which the effective
field theory approach can be tested only numerically, in the ferromagnetic case
both the microscopic and the effective theory can be solved analytically. In
this way the low-energy parameters of the effective theory are determined
exactly by matching to the underlying microscopic model. The low-energy
behavior at half-filling as well as in the single- and two-hole sectors is
described exactly by the systematic low-energy effective field theory. In
particular, for weakly bound two-hole states the effective field theory even
works beyond perturbation theory. This lends strong support to the quantitative
success of the systematic low-energy effective field theory method not only in
the ferromagnetic but also in the physically most interesting antiferromagnetic
case.Comment: 34 pages, 1 figur
R-Curve Response Of Silicon Carbide Whisker-Reinforced Alumina: Microstructural Influence
Rising fracture resistance with crack extension (R-curve response) can lead to improvements in the mechanical reliability of ceramics. To understand how microstructures influence the R-curve behavior, direct observations of crack interactions with microstructural features were conducted on SiC whisker-reinforced alumina. The contribution of the dominant toughening mechanisms to the R-curve behavior of these composites is discussed using experimental and theoretical studies
Systematic Low-Energy Effective Field Theory for Electron-Doped Antiferromagnets
In contrast to hole-doped systems which have hole pockets centered at , in lightly electron-doped antiferromagnets
the charged quasiparticles reside in momentum space pockets centered at
or . This has important consequences for
the corresponding low-energy effective field theory of magnons and electrons
which is constructed in this paper. In particular, in contrast to the
hole-doped case, the magnon-mediated forces between two electrons depend on the
total momentum of the pair. For the one-magnon exchange
potential between two electrons at distance is proportional to ,
while in the hole case it has a dependence. The effective theory
predicts that spiral phases are absent in electron-doped antiferromagnets.Comment: 25 pages, 7 figure
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
Homogeneous versus Spiral Phases of Hole-doped Antiferromagnets: A Systematic Effective Field Theory Investigation
Using the low-energy effective field theory for magnons and holes -- the
condensed matter analog of baryon chiral perturbation theory for pions and
nucleons in QCD -- we study different phases of doped antiferromagnets. We
systematically investigate configurations of the staggered magnetization that
provide a constant background field for doped holes. The most general
configuration of this type is either constant itself or it represents a spiral
in the staggered magnetization. Depending on the values of the low-energy
parameters, a homogeneous phase, a spiral phase, or an inhomogeneous phase is
energetically favored. The reduction of the staggered magnetization upon doping
is also investigated.Comment: 35 pages, 5 figure
SCET sum rules for B->P and B->V transition form factors
We investigate sum rules for heavy-to-light transition form factors at large
recoil derived from correlation functions with interpolating currents for light
pseudoscalar or vector fields in soft-collinear effective theory (SCET). We
consider both, factorizable and non-factorizable contributions at leading power
in the Lambda/m_b expansion and to first order in the strong coupling constant
alpha_s, neglecting contributions from 3-particle distribution amplitudes in
the B-meson. We pay particular attention to various sources of parametric and
systematic uncertainties. We also discuss certain form factor ratios where part
of the hadronic uncertainties related to the B-meson distribution amplitude and
to logarithmically enhanced alpha_s corrections cancel.Comment: 27 pages, 19 figures, minor corrections, matches journal versio
- …