3,085 research outputs found

    Bright solitons in Bose-Fermi mixtures

    Full text link
    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the ``natural'' value of the mutual Bose-Fermi (87^{87}Rb -40^{40}K in our case) scattering length.Comment: 6 pages, 6 figures, 1 tabl

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Symmetry Breaking and Enhanced Condensate Fraction in a Matter-Wave Bright Soliton

    Full text link
    An exact diagonalization study reveals that a matter-wave bright soliton and the Goldstone mode are simultaneously created in a quasi-one-dimensional attractive Bose-Einstein condensate by superpositions of quasi-degenerate low-lying many-body states. Upon formation of the soliton the maximum eigenvalue of the single-particle density matrix increases dramatically, indicating that a fragmented condensate converts into a single condensate as a consequence of the breaking of translation symmetry.Comment: 4 pages, 4 figures, revised versio

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Partially integrable systems in multidimensions by a variant of the dressing method. 1

    Full text link
    In this paper we construct nonlinear partial differential equations in more than 3 independent variables, possessing a manifold of analytic solutions with high, but not full, dimensionality. For this reason we call them ``partially integrable''. Such a construction is achieved using a suitable modification of the classical dressing scheme, consisting in assuming that the kernel of the basic integral operator of the dressing formalism be nontrivial. This new hypothesis leads to the construction of: 1) a linear system of compatible spectral problems for the solution U(λ;x)U(\lambda;x) of the integral equation in 3 independent variables each (while the usual dressing method generates spectral problems in 1 or 2 dimensions); 2) a system of nonlinear partial differential equations in nn dimensions (n>3n>3), possessing a manifold of analytic solutions of dimension (n2n-2), which includes one largely arbitrary relation among the fields. These nonlinear equations can also contain an arbitrary forcing.Comment: 21 page

    Collinear Photon Emission from the Quark-Gluon Plasma: The Light-Cone Path Integral Formulation

    Get PDF
    We give a simple physical derivation of the photon emission rate from the weakly coupled quark-gluon plasma connected with the collinear processes qγqq\to \gamma q and qqˉγq\bar{q}\to \gamma. The analysis is based on the light-cone path integral approach to the induced radiation. Our results agree with that by Arnold, Moore and Yaffe obtained using the real-time thermal perturbation theory. It is demonstrated that the solution of the AMY integral equation is nothing but the time-integrated Green's function of the light-cone path integral approach written in the momentum representation.Comment: 12 pages, 2 figure

    Cosmology and the Korteweg-de Vries Equation

    Full text link
    The Korteweg-de Vries (KdV) equation is a non-linear wave equation that has played a fundamental role in diverse branches of mathematical and theoretical physics. In the present paper, we consider its significance to cosmology. It is found that the KdV equation arises in a number of important scenarios, including inflationary cosmology, the cyclic universe, loop quantum cosmology and braneworld models. Analogies can be drawn between cosmic dynamics and the propagation of the solitonic wave solution to the equation, whereby quantities such as the speed and amplitude profile of the wave can be identified with cosmological parameters such as the spectral index of the density perturbation spectrum and the energy density of the universe. The unique mathematical properties of the Schwarzian derivative operator are important to the analysis. A connection with dark solitons in Bose-Einstein condensates is briefly discussed.Comment: 7 pages; References adde

    Dressing method based on homogeneous Fredholm equation: quasilinear PDEs in multidimensions

    Full text link
    In this paper we develop a dressing method for constructing and solving some classes of matrix quasi-linear Partial Differential Equations (PDEs) in arbitrary dimensions. This method is based on a homogeneous integral equation with a nontrivial kernel, which allows one to reduce the nonlinear PDEs to systems of non-differential (algebraic or transcendental) equations for the unknown fields. In the simplest examples, the above dressing scheme captures matrix equations integrated by the characteristics method and nonlinear PDEs associated with matrix Hopf-Cole transformations.Comment: 31 page

    Modulated wavepackets associated with longitudinal dust grain oscillations in a dusty plasma crystal

    Full text link
    The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs) propagating in a dusty plasma crystal is investigated in a continuum approximation. It is shown that long wavelength LDLWs are modulationally stable, while shorter wavelengths may be unstable. The possibility for the formation and propagation of different envelope localized excitations is discussed. It is shown that the total grain displacement bears a (weak) constant displacement (zeroth harmonic mode), due to the asymmetric form of the nonlinear interaction potential. The existence of asymmetric envelope localized modes is predicted. The types and characteristics of these coherent nonlinear structures are discussed.Comment: 18 pages, 7 figures, to appear in Physics of Plasma

    Combination of inverse spectral transform method and method of characteristics: deformed Pohlmeyer equation

    Full text link
    We apply a version of the dressing method to a system of four dimensional nonlinear Partial Differential Equations (PDEs), which contains both Pohlmeyer equation (i.e. nonlinear PDE integrable by the Inverse Spectral Transform Method) and nonlinear matrix PDE integrable by the method of characteristics as particular reductions. Some other reductions are suggested.Comment: 12 page
    corecore