Abstract

In this paper we develop a dressing method for constructing and solving some classes of matrix quasi-linear Partial Differential Equations (PDEs) in arbitrary dimensions. This method is based on a homogeneous integral equation with a nontrivial kernel, which allows one to reduce the nonlinear PDEs to systems of non-differential (algebraic or transcendental) equations for the unknown fields. In the simplest examples, the above dressing scheme captures matrix equations integrated by the characteristics method and nonlinear PDEs associated with matrix Hopf-Cole transformations.Comment: 31 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019