In this paper we develop a dressing method for constructing and solving some
classes of matrix quasi-linear Partial Differential Equations (PDEs) in
arbitrary dimensions. This method is based on a homogeneous integral equation
with a nontrivial kernel, which allows one to reduce the nonlinear PDEs to
systems of non-differential (algebraic or transcendental) equations for the
unknown fields. In the simplest examples, the above dressing scheme captures
matrix equations integrated by the characteristics method and nonlinear PDEs
associated with matrix Hopf-Cole transformations.Comment: 31 page