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Weak wave turbulence scaling theory for diffusion
and relative diffusion in turbulent surface waves
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PACS. 47.27.Qb — Turbulent diffusion.
PACS. 05.40.-a — Fluctuation phenomena, random processes, noise, and Brownian motion.
PACS. 47.20.Dr — Surface-tension-driven instability.

Abstract. — We examine the applicability of the weak wave turbulence theory in explaining
experimental scaling results obtained for the diffusion and relative diffusion of particles moving
on turbulent surface waves. For capillary waves our theoretical results are shown to be in
good agreement with experimental results, where a distinct crossover in diffusive behavior is
observed at the driving frequency. For gravity waves our results are discussed in the light of
ocean wave studies.

Introduction. — The study of particles moving on surface waves has shown that the
particle motion often is far from being Brownian [1-5]. Similar results are found in ocean
studies [6]. The turbulence observed in surface waves is strongly influenced by the presence
of a dispersion relation (for deep-water surface waves) wi = gk + ok®/p between the wave
oscillation frequency and the wave vector k [7]. Here g is the gravitational acceleration, o
is the surface tension coefficient, and p is the density. Experimentally surface waves can be
studied by vertically oscillating a fluid with a free surface. On the surface of the fluid, waves
with a clearly discernible wavelength A are then formed if the amplitude of oscillations exceeds
a critical value, the so-called Faraday instability [8]. The excitation of surface waves in the
Faraday system is a parametric effect giving rise to a fundamental wave frequency 2 equal
to half the driving frequency. The frequency 2 and wavelength A are associated through the
dispersion relation. At small frequencies, k < k, = (gp/o)"/?, the first term in the dispersion
relation dominates, and the waves formed are called gravity waves (typical of ocean waves).
At large frequencies (k > k,) the effect of gravity can be neglected, and the second term
dominates. The waves thus formed are called capillary waves. For water, the wavelength
a = 27 [k,, separating gravity and capillary waves, is about 2 cm.

Several studies have been carried out to measure the diffusivity of particles moving on cap-
illary surface waves generated above the Faraday instability [1-5,9]. Two particles separated
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by a distance R move more rapidly apart as R is increased. The relative diffusivity can be

defined as AR?
R =2R 1

where év is the longitudinal component of the velocity difference. The variance o2 of the
relative diffusivity dR?/dt is related to the velocity difference squared,

(2)" ~ qoetmy®) @)
It has been found experimentally that in capillary waves (%)2 o 1 —a(R/A)~*, with a =
0.66 [9].

The purpose of the present investigation is to examine the applicability and limitations
of the weak wave turbulence theory in explaining experimental scaling results obtained for
the diffusion and relative diffusion of particles moving on turbulent surface waves. Diffusion
theories based on random wave fields have likewise been considered [10], and Herterich and
Hasselmann [11] particularly considered diffusion by surface gravity waves. For relative dif-
fusion on capillary waves we find the exponent —1/4 as in experiments in the regime R > A.
For gravity waves, we find an exponent 7/6 ~ 1.14, a result which is intriguingly close to the
value 1.15 found in ocean studies by Okubo [6]. We note that the relative-diffusion exponent
4/3 obtained in fully developed turbulence theory have been previously used in the discussion
of experimental data [12].

To obtain the diffusivity, the particle displacement Az (t) = x(to+t) —x(to) over a time ¢ is
measured along an arbitrary axis for many initiation times ¢y. From the resulting distribution
the variance V() = ([Az(¢)]?) is found, and the diffusivity D can be extracted, V (t) = 2Dt.
For Brownian motion the diffusivity D is a constant. For deep water capillary waves (we only
consider deep-water surface waves) formed at high frequencies, the diffusion has been found

experimentally to be anomalous:
V(t) ~t (3)

with A > 1 (super-diffusive) [3-5,9]. The exponent is observed to change drastically from a
value A = 1.6-1.9 at length scales below A to a value A = 1.0-1.3 at length scales above A. The
value of ) is observed to decrease with increasing drive; at large drive A attains the Brownian
motion value 1 [3,4]. Assuming a connection between spatial and temporal correlations, we
find for capillary waves A = 16/9 for length scales below A, and A = 1 for length scales above
A, i.e. values rather close to the experimental values. Ocean studies have been performed
using floaters [13], chemical tracers [6], and near-surface drifters. To what extent these studies
relate to surface waves is unclear. Our results do, however, indicate a connection at least for
the chemical tracers, where Okubo finds an exponent of 2.34 and from weak wave turbulence
theory we find 8/3.

Spatial correlations and relative diffusion. — Spatial correlations between pairs of parti-
cles at r and r + R are related to the velocity difference squared

([ou(R)P) = (o(r + R) = v(r)]*) = 2[(Jo(r)]*) = (v(r + R) - v(r))] . (4)

Following the calculations of ref. [14], we have an expression for the space correlation of the
velocity

C(R) = (v(r)o(r + R)) ~ / ke eSO ~ /O W do(kR)dk | (5)
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where ny, is the isotropic Kolmogorov spectrum [15], and Jy is the zeroth-order Bessel function.
For capillary waves, the dispersion relation is wy = (o/p)'/2k* with a = 3/2, and the
isotropic Kolmogorov spectrum (three-wave interactions) is [15, 16]

g, ~ PY2p3/Ag=1AE=B (6)

where = 17/4 and P is the energy flux assumed to be constant. From measurements of the
spectrum of wave amplitudes [17,18] we know that the spectrum levels off below K = 27/A.
In order to account for this change we introduce a scaling function g(k/K) across the drive
multiplying ng. Atk < K, g(k/K) must rise from zero in such a way as to quench the decrease
of ng. At k > K, g(k/K) can be assumed constant (up to the inverse dissipative scale kq,
where the theory breaks down). The motion at length scales below the dissipative scale is
expected to become ballistic. Also the system size L is a relevant length scale. Obviously the
diffusion change character near the system size since particles cannot travel longer distances
than L. Also we shall consider the characteristic length scale a separating capillary from
gravity waves.
The integral for the spatial correlations is given by

CUR) ~ [ B+ Pg(h k) Jo(kR)ak (7)

where the specific k-dependence for wy and ny has been inserted. For capillary waves 2 + a —
B = —3/4. This integral depends explicitly on R. Counsider the value Kr ~ 2.4/R, the lowest
k-value at which Jy(kR) = 0. For K > K, the dominant contribution to the integral comes
from the range K < k < Kpg, where the scaling function g is constant,

oo
C(R) N/ k2+a_ﬁg(/€/K)Jo(k‘R)dk‘ -~ k3+a—ﬁ|§R ~ R—3—a+8 (8)
0

The result for the velocity difference is
([60(R)P) ~ 1= b(KR) >~ ~ 1 = b(KR)™V/* (9)

where b is a constant of order one [19].

For Kr < K, the Bessel function oscillations set in below K, while the integrand is still
increasing in size due to the behavior of the scaling function g(k/K). Therefore, the dominant
contribution to the integral comes from a peak centered around K, it is oscillatory in nature
with a vanishing envelope falling off like R3/2. For large R-values we essentially have (|6v(R)|?)
constant.

For gravity waves the dispersion relation is w = g'/2k® with a = 1/2 (four-wave interac-
tion) and we have an energy flow towards higher frequencies compared to €2 giving rise to the
isotropic Kolmogorov spectrum [15,20]

ng ~ PY3p* R0 (10)

where 0 = 4 and P is the energy flux assumed to be constant. Below ) a constant wave
number flux @ towards lower frequencies yields [21]

Ny ~ Q1/3p2/391/6k—ﬁ+a/3 ; (11)

with § — /3 = 23/6.
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As above, we invoke a scaling function g(k/K) describing the change in the behavior of ny,
as k crosses the wave number K of the drive. According to the form of the spectra, we have

1, if K <k<kg kg,

(12)
ko3 itk <k < K.

g(k/kp) ~ {

Other corrections are relevant at length scales outside the above regime. The motion at
sufficiently large length scales (k < kz) may be expected to become Brownian, as also found
in studies of motion of drifters near the surface of the oceans [6].

For the velocity difference squared we have

(15u(B)2) ~ / TRy (/KL — Jo(kR)]dk ~ / TR/ K)dk . (13)

For Kr > K, the scaling function is constant in the integration region above K, and we
have
(Su(R)) ~ K"/ ~ (KR)V2. (14)

For Kr < K the part of the integration, where g(k/K) ~ k'/¢, gives the R-dependent
contribution, and

(|6v(R)|?) + const ~ Kl_{l/3 ~ (KR)Y? . (15)

The growth of {|6v(R)|?) stops at length scale L. We note that the exponent 1/3 for the
velocity difference squared implies an exponent 7/6 for the relative-diffusivity measure o.
It is interesting that Okubo [6] finds the relative-diffusion exponent to be 1.15 for oceanic
diffusion, although we should emphasize that the relative-diffusion exponent 4/3 obtained in
fully developed turbulence theory has generally been applied to explain experimental data [12].

Temporal correlations and capillary waves. — Next, we consider the single-particle dif-
fusion in capillary waves. For arbitrary times, the mean-square displacement (r2) = (|r(to +
t) — 7(to)|?) is expressed in terms of the Lagrangian velocity correlation function C(7) =
(v(r(®)v(r(t+7))) as [22]

(r2) =2t/0 (1= 7/8)C(r)dr . (16)

In the Taylor limit of very small ¢, C(7) ~ (v}), where (v?) is the mean-square Lagrangian
velocity, to be determined by sampling along particle orbits. In this case

(r) ~ (i)t . (17)

For incompressible flows, the mean-square velocity obtained by Eulerian sampling, (v3), is
identical to the mean-square velocity, (v?), obtained from Lagrangian measurements [23].
The subscripts on (v?) will be omitted from here on. For large times, t > 71, where 71, =
ﬁ Jo7 C()dr is the Lagrangian integral time scale, eq. (16) gives a diffusion-like dispersion

(r?) ~ 2(v?) Lt . (18)
First, we consider capillary waves. If we invoke a scaling form (r2) ~ t* at ¢t < T, then

eq. (16) gives
C(r) ~ 172, (19)
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On the other hand, invoking the same scaling (r?) ~ t* and using eq. (8) yields
Cr) ~ (r3) 74 . (20)
The result is a self-consistency condition for the exponent A\. We find

o416 (21)
5+a—-p 9
This value obtained for A is in good agreement with experimental observations which vary
+10% from this value [3,4]. From this the exponent for the time correlation function becomes
—2/9.

Above, it has tacitly been assumed that the time scale ¢ is larger than the one corre-
sponding to the dissipative frequency wq corresponding to the inverse dissipative scale kq.
Experimentally, the sampled diffusion distances at small times may approach the dissipative
scale at low values of the drive. Below this scale A has the ballistic value 2, and the observed
slope (1.8-1.9) slightly larger than the theoretical value 16/9 may be an effect hereof.

We have also assumed that the particles can follow the fluid velocity field, i.e. if v is the
velocity field of the particles and w is that of the fluid, our assumption is that v = u, or at least
that the weak ansatz C(7) = (u(t 4+ 7)u(¢)) is fulfilled. However, at large driving amplitudes
the particles may not follow the fluid velocity. As an example, assume that corrections for the
velocity correlation take the following form:

(w(t)v(t + 7)) ~ 7 (u(t)u(t + 7)), (22)

where v and u are the velocity fields of the particles and of the flow, respectively. Following
the calculation above, we then find

4—26 16 — 89
- 54a-8 9
which may explain why a slightly smaller exponent than 16/9 is observed for higher driving
amplitudes (e.g., § = 0.2 gives an exponent A = 1.6).

Equivalently, the self-consistent condition for A (eq. (21)) can be obtained in terms of the
energy spectrum

A

(23)

Ep~k™, (24)

where the energy per area is

FE = /Ekdk = /Ekdk = /kwknkdk, (25)

we have the relationship v = —(1 + a — ), and

4
4—v -

A= (26)
The capillary-wave exponent is v = 7/4.

For t > T, the time correlation C(7) is oscillatory and therefore negligible for ¢t > T. In
this case, eq. (18) applies:

(r*) ~t, (27)
and A = 1. The Brownian-motion value obtained for A at times 7 above T is in agreement
with experimental observations for large drives. The slightly larger values of A\ at lower drives
may arise from corrections to scaling. Experimentally, at sufficiently large times (above those
considered in [3,4]), the sampled diffusion distances are limited by the systems size L and
eventually one must have A = 0.
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Temporal correlations and gravity waves. — For gravity waves, we can follow a similar
assumption as the one proposed for capillary waves. However, in contrast to the situation for
capillary waves, the scaling is given for (|v(t) — v(t + 7)|?). Thus, for 7 < T, we have from

eq. (14)
([o(t) —v(t +7)) ~ T, (28)

and for 7 > T, we get from eq. (15)

(Jo(t) —v(t +7)[?) ~ 76 (29)
Assuming
2
o~ 1T (30)

the exponents can now be calculated using eq. (2) from the self-consistent condition

ol { oA/8 small ¢,
t - ~J

t7)\/12 (31)

large t .

The values obtained for A are 8/3 for small ¢ and 12/5 for large ¢. Interestingly, a similar
situation is observed in ocean studies, where A = 2.34 is found in several dye studies collected
and analyzed by Okubo [6].

Conclusions. — Good agreement is found between theoretical and experimental scaling
results for the diffusion and relative diffusion of particles on weakly turbulent surface waves.
In the case of relative diffusion, for capillary waves the exponent —1/4 for the space correlation
function is recovered. For gravity waves, a scaling behavior is derived for the velocity difference
squared with the exponent changing from 1/2 at small distances to 1/3 at large distances.
This corresponds respectively to scaling exponents 5/4 and 7/6 for the relative diffusivity.
Intriguingly, Okubo finds a relative-diffusion exponent of 1.15 for oceanic diffusion [6]. This
differs from the relative-diffusion exponent 4/3 obtained in fully developed turbulence theory,
previously used in the discussion of experimental data [12].

For capillary waves the theory yields a crossover in the diffusivity at the wavelength A
with a change in diffusion exponent A from A = 16/9 ~ 1.78 to A = 1, in good agreement
with experimental findings. Particles suspended on the fluid surface may not follow the fluid
far above the Faraday instability, and we suggest that this may explain the small discrepancy
between weak-turbulence theory and experimental results in this regime. For gravity waves
the weak-turbulence theory gives a diffusion exponent of 12/5 = 2.4 for long times which
compares favourably with the exponent 2.34 found by Okubo for dye diffusion. To what
extent the weak wave turbulence theory really explains the oceanic diffusivity is unclear but
it is fascinating to speculate that wave motion taking place mostly on a short scale could be
responsible for the long-time diffusion in oceans. At very long time scales, i.e. above the
Lagrangian time scale, ordinary Brownian motion is expected.
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