3,812 research outputs found

    Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    Full text link
    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2.H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0 = (-2.12 ±\pm 0.08) cm−1^{-1}, between neighbor coppers at 4.49 {\AA} along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0 = (-2.27 ±\pm 0.02) cm−1^{-1} and g = 2.091 ±\pm 0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 {\AA} are estimated within the range 0.1 < |2J1| < 0.4 cm−1^{-1}, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain interactions.Comment: 10 pages, 4 figure

    Heavy-Quark Diffusion and Hadronization in Quark-Gluon Plasma

    Get PDF
    We calculate diffusion and hadronization of heavy quarks in high-energy heavy-ion collisions implementing the notion of a strongly coupled quark-gluon plasma in both micro- and macroscopic components. The diffusion process is simulated using relativistic Fokker-Planck dynamics for elastic scattering in a hydrodynamic background. The heavy-quark transport coefficients in the medium are obtained from non-perturbative TT-matrix interactions which build up resonant correlations close to the transition temperature. The latter also form the basis for hadronization of heavy quarks into heavy-flavor mesons via recombination with light quarks from the medium. The pertinent resonance recombination satisfies energy conservation and provides an equilibrium mapping between quark and meson distributions. The recombination probability is derived from the resonant heavy-quark scattering rate. Consequently, recombination dominates at low transverse momentum (pTp_T) and yields to fragmentation at high pTp_T. Our approach thus emphasizes the role of resonance correlations in the diffusion and hadronization processes. We calculate the nuclear modification factor and elliptic flow of DD- and BB-mesons for Au-Au collisions at the Relativistic Heavy Ion Collider, and compare their decay-electron spectra to available data. We also find that a realistic description of the medium flow is essential for a quantitative interpretation of the data.Comment: 16 pages, 14 figure

    Dileptons in High-Energy Heavy-Ion Collisions

    Get PDF
    The current status of our understanding of dilepton production in ultrarelativistic heavy-ion collisions is discussed with special emphasis on signals from the (approach towards) chirally restored and deconfined phases. In particular, recent results of the CERN-SPS low-energy runs are compared to model predictions and interpreted. Prospects for RHIC experiments are given.Comment: Invited talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; 1 Latex and 9 eps-/ps-files Reoprt No.: SUNY-NTG-02-0

    The Vector Probe in Heavy-Ion Reactions

    Full text link
    We review essential elements in using the JP=1−J^P=1^- channel as a probe for hot and dense matter as produced in (ultra-) relativistic collisions of heavy nuclei. The uniqueness of the vector channel resides in the fact that it directly couples to photons, both real and virtual (dileptons), enabling the study of thermal radiation and in-medium effects on both light (ρ,ω,ϕ\rho, \omega, \phi) and heavy (Κ,΄\Psi, \Upsilon) vector mesons. We emphasize the importance of interrelations between photons and dileptons, and characterize relevant energy/mass regimes through connections to Quark-Gluon-Plasma emission and chiral symmetry restoration. Based on critical analysis of our current understanding of data from fixed-target energies, we identify open key questions to be addressed.Comment: Invited Talk at the Hot Quarks 2004 Workshop, July 18-24, 2004 (Taos Valley, NM, USA), 15 pages latex incl 14 figs and iop style files, to appear in the proceeding

    Statistical Complexity and Nontrivial Collective Behavior in Electroencephalografic Signals

    Full text link
    We calculate a measure of statistical complexity from the global dynamics of electroencephalographic (EEG) signals from healthy subjects and epileptic patients, and are able to stablish a criterion to characterize the collective behavior in both groups of individuals. It is found that the collective dynamics of EEG signals possess relative higher values of complexity for healthy subjects in comparison to that for epileptic patients. To interpret these results, we propose a model of a network of coupled chaotic maps where we calculate the complexity as a function of a parameter and relate this measure with the emergence of nontrivial collective behavior in the system. Our results show that the presence of nontrivial collective behavior is associated to high values of complexity; thus suggesting that similar dynamical collective process may take place in the human brain. Our findings also suggest that epilepsy is a degenerative illness related to the loss of complexity in the brain.Comment: 13 pages, 3 figure

    Hadro-Chemistry and Evolution of (Anti-) Baryon Densities at RHIC

    Get PDF
    The consequences of hadro-chemical freezeout for the subsequent hadron gas evolution in central heavy-ion collisions at RHIC and LHC energies are discussed with special emphasis on effects due to antibaryons. Contrary to naive expectations, their individual conservation, as implied by experimental data, has significant impact on the chemical off-equilibrium composition of hadronic matter at collider energies. This may reflect on a variety of observables including source sizes and dilepton spectra.Comment: 4 pages ReVTeX incl. 3 ps-figs, submitted to PR

    Kolmogorov-Smirnov Test Distinguishes Attractors with Similar Dimensions

    Get PDF
    Recent advances in nonlinear dynamics have led to more informative characterizations of complex signals making it possible to probe correlations in data to which traditional linear statistical and spectral analyses were not sensitive. Many of these new tools require detailed knowledge of small scale structures of the attractor; knowledge that can be acquired only from relatively large amounts of precise data that are not contaminated by noise-not the kind of data one usually obtains from experiments. There is a need for tools that can take advantage of \u27\u27coarse-grained\u27\u27 information, but which nevertheless remain sensitive to higher-order correlations in the data. We propose that the correlation integral, now much used as an intermediate step in the calculation of dimensions and entropies, can be used as such a tool and that the Kolmogorov-Smirnov test is a convenient and reliable way of comparing correlation integrals quantitatively. This procedure makes it possible to distinguish between attractors with similar dimensions. For example, it can unambiguously distinguish (p \u3c 10(-8)) the Lorenz, Rossler, and Mackey-Glass (delay = 17) attractors whose correlation dimensions are within 1% of each other. We also show that the Kolmogorov-Smirnov test is a convenient way of comparing a data set with its surrogates

    Resolving the Antibaryon-Production Puzzle in High-Energy Heavy-Ion Collisions

    Get PDF
    We argue that the observed antiproton production in heavy-ion collisions at CERN-SpS energies can be understood if (contrary to most sequential scattering approaches) the backward direction in the process ppˉ↔nˉπp\bar p \leftrightarrow \bar{n}\pi (with nˉ\bar{n}=5-6) is consistently accounted for within a thermal framework. Employing the standard picture of subsequent chemical and thermal freezeout, which induces an over-saturation of pion number with associated chemical potentials of Όπ≃\mu_\pi\simeq~60-80 MeV, enhances the backward reaction substantially. The resulting rates and corresponding cross sections turn out to be large enough to maintain the abundance of antiprotons at chemical freezeout until the decoupling temperature, in accord with the measured pˉ/p\bar{p}/p ratio in Pb(158AGeV)+Pb collisions.Comment: 4 pages ReVTeX incl. 2 eps-figs, minor changes (two figs added, rate eq. written more explicitly), version accepted for publication in PR

    Comparative Study of Embedding Methods

    Get PDF
    Embedding experimental data is a common first step in many forms of dynamical analysis. The choice of appropriate embedding parameters (dimension and lag) is crucial to the success of the subsequent analysis. We argue here that the optimal embedding of a time series cannot be determined by criteria based solely on the time series itself. Therefore we base our analysis on an examination of systems that have explicit analytic representations. A comparison of analytically obtained results with those obtained by an examination of the corresponding time series provides a means of assessing the comparative success of different embedding criteria. The assessment also includes measures of robustness to noise. The limitations of this study are explicitly delineated. While bearing these limitations in mind, we conclude that for the examples considered here, the best identification of the embedding dimension was achieved with a global false nearest neighbors argument, and the best value of lag was identified by the mutual information function
    • 

    corecore