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Embedding experimental data is a common first step in many forms of dynamical analysis. The choice of
appropriate embedding parameters~dimension and lag! is crucial to the success of the subsequent analysis. We
argue here that the optimal embedding of a time series cannot be determined by criteria based solely on the
time series itself. Therefore we base our analysis on an examination of systems that have explicit analytic
representations. A comparison of analytically obtained results with those obtained by an examination of the
corresponding time series provides a means of assessing the comparative success of different embedding
criteria. The assessment also includes measures of robustness to noise. The limitations of this study are
explicitly delineated. While bearing these limitations in mind, we conclude that for the examples considered
here, the best identification of the embedding dimension was achieved with a global false nearest neighbors
argument, and the best value of lag was identified by the mutual information function.

DOI: 10.1103/PhysRevE.67.066210 PACS number~s!: 05.45.2a

I. INTRODUCTION

Embedding experimental data is a first step common to
many forms of dynamical analysis. In this process a scalar
time series$x1 ,x2 ,...,xn% is used to construct vectors inRm

of the formXi5(xi ,xi 1L ,xi 12L ,...,xi 1(m21)L), wherem is
the embedding dimension andL is the lag. For proper values
of m andL a smooth dynamicsF: Xi→Xi 11 is defined which
reconstructs the underlying dynamics. Measures of dynami-
cal behavior are then based on the quantitative characteriza-
tion of the m-dimensional geometry of the set$Xi%. The
mathematical foundation of this procedure is the Takens-
Mañé embedding theorem@1,2#. This result has been re-
viewed by Noakes@3# and Sauer, Yorke, and Casdagli@4#. A
summary statement of the theorem is given in the Appendix.

The choice of embedding parametersm andL is crucial to
the subsequent analysis. An inappropriate choice can result
in the spurious indication of nonlinear structure where none
is present@5,6#. Conversely, an inappropriate choice can re-
sult in the failure to resolve structures that are indeed present
in the data. There is a large, growing, and somewhat conflict-
ing literature describing candidate criteria for selecting em-
bedding parameters@7–22#.

There is no single correct answer. The optimal embedding
strategy may depend on both the time series and the applied
measure. That is, the embedding criterion that is optimal
when studying fluid flow data may not be optimal in the
analysis of a time series from an electroencephalogram.
Similarly, a procedure for selectingm andL when the corre-
lation dimension is to be estimated may not succeed when
calculating Lyapunov exponents. Therefore the limitations of
this investigation should be explicitly recognized. While op-
timistically we hope to distinguish the methods that are ef-
fective for a majority of time series and applied measures,

the minimal result should be the identification of those em-
bedding methods that are most appropriate for a specific time
series and applied measure. This is, however, a better alter-
native than arbitrary parameter specification.

An examination of the prior literature on this subject re-
veals a most interesting problem. Suppose two embedding
criteria are used to select embedding parameters for a time
series. Let (m1 ,L1) and (m2 ,L2) denote the results. Which
is the better embedding? To answer this question we need an
adjudicating measureM, such that if M15M (m1 ,L1) is
greater thanM25M (m2 ,L2) we conclude that the first em-
bedding is the better of the two. Following this reasoning, a
program of comparison testing of embedding criteria consists
of two elements:~i! competing embedding criteria that are
used to select embedding parametersm and L, and ~ii ! a
metricM that is used to choose between them. Unfortunately,
this program has a fundamental logical flaw. The adjudicat-
ing measureM is itself an embedding criterion. By construc-
tion, the best embedding is the (m,L) pair that maximizesM.
The selection of an embedding therefore becomes a con-
strained optimization: maximizeM (m,L) subject to the con-
straints thatm and L are positive integers, but this analysis
does not, and cannot, identifyM. A circular logic has resulted
in which embedding criteria are assessed by an adjudicating
criterion which is itself an embedding criterion. The reason-
ing outlined above leads to the following conclusion: the
optimal embedding for a time series cannot be determined by
criteria based solely on the time series itself.~In this context,
we wish to acknowledge the importance of Rapoport’s work
@23# on the analysis of paradox.! Failure to recognize this
point has resulted in an embedding criterion–adjudicating
measure–embedding criterion circularity that has character-
ized much of the literature on this subject.

In order to break this cycle, we must bring to the analysis
knowledge that cannot be provided by the time series itself.
We can accomplish this by basing our investigation on the
analysis of time series that were generated by dynamical sys-*Author to whom correspondence should be addressed.
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tems that have explicit analytical representations as
n-dimensional differential or functional differential equa-
tions. Because the analytical representations are available,
we can apply forms of analysis that cannot be applied to the
time series itself. Specifically, we can use procedures for
determining the largest Lyapunov exponent that requires
equations for the vector field throughout the state space con-
structed by Benettinet al. @24,25#. These values provide a
gold standard for subsequent comparisons. The first phase of
the investigation proceeds in five steps.

~1! Three model systems whose governing equations can
be expressed analytically are identified and time series are
generated from each of them.

~2! The largest Lyapunov exponents of these systems are
determined using the analytical expressions of the vector
field.

~3! Five criteria for selecting embedding parameters are
described and applied to the time series generated by the
model system.

~4! Using these embedding parameters, the largest
Lyapunov exponent of each time series is calculated for the
five sets of embedding parameters using a procedure pub-
lished by Gao and Zheng@12# that can be applied to time
series data.

~5! The Lyapunov exponents computed from the time se-
ries are compared against those determined by the more ex-
haustive analytically based calculations. The criterion that
most consistently reproduces the reference values of the
Lyapunov exponents is deemed to be the most successful.

The second phase of the investigation examines the ro-
bustness of these conclusions when sensitivity to noise is
considered. This component of the analysis includes both
computationally generated and experimental data.

II. SPECIFICATION OF THE EXAMPLE SYSTEMS AND
THEIR LARGEST LYAPUNOV EXPONENTS

Three example systems will be considered in this study.
The first is the Ro¨ssler system@26#:

dx/dt52~y1z!,

dy/dt5x1ay,

dz/dt5b1z~x2g!,

a50.15, b50.20, g510.00, dt5.125.

A 10 000-element time series was computed after the trajec-
tory converged onto the attractor using a sixth order Runge-
Kutta-Hutta algorithm @27#. The second system is the
Mackey-Glass equation@28#:

dx/dt5
ax~ t2t!

11xc~ t2t!
2bx,

a50.20, b50.10, c510.00, t517.

The parametert is a time delay. Thus, this is an infinite
dimensional functional differential equation. A 10 000-point

trajectory on the attractor was computed with a time interval
of dt50.10. The third system is identical to the second ex-
cept that the time delay is set equal tot5150.

The largest Lyapunov exponent of each of these systems
was calculated by a procedure published by Benettinet al.
@24,25# that exploits the availability of analytical expressions
for the vector field in the behavior space. The analysis begins
by considering a smalln-dimensional sphere of initial con-
ditions. Over time this sphere evolves into an ellipsoid. The
Lyapunov exponents determine the rate of its growth. In the
Benettin et al. computational procedure, the trajectories of
points on the surface of the sphere are approximated by the
action of the linearized equations of motion. The vectors are
repeatedly reorthonormalized using the Gram-Schmidt pro-
cedure. The Gram-Schmidt reorthonormalization does not af-
fect the direction of the first vector in this system, so it tends
to seek out the direction in tangent space corresponding to
the most rapid growth. This provides an estimate of the larg-
est Lyapunov exponent. The values of the Lyapunov expo-
nents were found to be 0.129~Rössler!, 0.0071 ~Mackey-
Glasst517), and 0.0023~Mackey-Glasst5150).

III. EMBEDDING CRITERIA

As previously stated, an inappropriate choice of embed-
ding dimension can result in a failure to characterize the
structure of the time series. Ifm is too small, the embedded
manifold is folded onto itself, and elements of its structure
will be lost to the analysis. However, a strategy of simply
using a very large embedding dimension for all cases is even
less successful. The data requirements for the analysis in-
crease with the embedding dimension. If the value ofm is
too great, structure is dispersed through a high dimensional
space, and the time series is indistinguishable from noise.
Thus we conclude that the embedding dimension must be
large enough but no larger.

Several methods have been developed to estimate the
minimum acceptable embedding dimension@7,17,20,29#. In
this paper we compare methods based on the concept of
minimizing the number of false nearest neighbors. LetXi be
an embedded point inRm, and letXj be the point closest to
it. Consider the map ofXi andXj from Rm to Rm11. If the
(m11)-dimensional points are no longer nearest neighbors,
thenXi andXj in Rm are false nearest neighbors. False near-
est neighbors can result when the embedded manifold is
folded onto itself inRm. When the embedding dimension is
increased, an unfolding of the embedded set can separateXi
andXj . The argument of false nearest neighbors concludes
that the minimum acceptable embedding dimension can be
established by determining a measure of the frequency of
false nearest neighbors as a function of embedding dimen-
sion. The optimal embedding dimensionmopt is the smallest
dimension that results in a stable minimum of this measure.

Thus, the underlying assumption of the methods com-
pared in this paper holds that, whenm,mopt and m is in-
creased fromm to m11, the metric that is used to reflect the
frequency of false nearest neighbors will decrease. Form
>mopt, further increases in the embedding dimension will
not result in a significant decrease in this metric. All of the

CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E67, 066210 ~2003!

066210-2



criteria compared in this paper are constructed on this argu-
ment. They differ, however, in the metric that is used to
characterize the frequency of false nearest neighbors. The
choice of this metric is by no means trivial.Xi andXj in Rm

can be false nearest neighbors under this definition even
though the data were appropriately embedded. This can hap-
pen because they were positioned on opposite sides of a
separatrix or, more commonly, as the result of noise in ob-
served data. A simple exhaustive calculation of the frequency
of false nearest neighbors is not necessarily the most suc-
cessful. Measures that, for example, incorporate a time his-
tory of local trajectories centered onXi andXj might prove
to be more robust against noise. This is one of the questions
examined in this investigation.

A. Method of Gao and Zheng

Gao and Zheng@11,12# use the following argument to
construct a measure that reflects the incidence of false near-
est neighbors. Consider two vectorsXi and Xj . If they are
genuine nearest neighbors, and if the flow is uniform in this
region of the state space, thenXi 1k and Xj 1k will also be
close to each other for smallk. The statistical nature of this
argument is apparent when it is recognized that domains of
the state space where flow separates provide exceptions to
this generalization. Additionally, for bounded chaotic sys-
tems, this will cease to be true ifk is large. IfXi andXj are
false nearest neighbors, they are, by definition, close to each
other only because the embedded set has been folded onto
itself in a neighborhood containing these points. Therefore,
the flow controlling the evolution ofXi in state space is not
necessarily similar to the flow controlling the evolution of
Xj . Compared to genuine nearest neighbors, there is a higher
probability that the trajectories corresponding toXi and Xj
will separate.

The method of Gao and Zheng is based on the following
argument. LetuXi ,Xj u denote the Euclidean distance between
points Xi and Xj . Typically, uXi 1k ,Xj 1ku/uXi ,Xj u will be
greater ifXi andXj are false nearest neighbors. A successful
embedding is one that will, on average, reduce this ratio.
Therefore, they construct the following measure:

L~k,m,L !5
1

Nref
(
i , j

lnH uXi 1k ,Xj 1ku
uXi ,Xj u

J .

From this equation it is seen that four parameters must be
specified,Nref , k, m, and L. In our implementation of the
Gao-Zheng criterion, the average is taken fromNref points
Xi , randomly selected from points in the embedding space.
In the calculations of Fig. 1, 10 000 data points are used and
Nref5500. After Xi has been chosen, anXj is found that
satisfies two criteria. First, we requireuXi ,Xj u<r , that is, the
average is taken over points that are initially close to each
other. For example, in the calculations shown in Fig. 1,r is
10% of the standard deviation of the time series. Numerical
experiments indicated that the results are robust against
variations inr. This condition alone is insufficiently restric-
tive. If this were the sole criterion used to selectXj , L could
emphasize those points that are close toXi because the cor-

responding data points inXj were sampled at approximately
the same time. If an oversampled signal is being examined,
this can lead to a spurious indication of structure in the state
space. In order to control against this possibility, we impose
a second condition onXj , namely, a minimum elapsed time
between sampled data pointsXi and Xj . This is done by
requiring u i 2 j u to be greater than some minimum temporal
spacing, denotedkseparation, which can be expressed in terms
of the autocorrelation time. This is an application of a pro-
cedure originally introduced by Theiler@44# in the specific
context of calculating the correlation dimension. In the cal-
culations shown in Fig. 1, we requiredu i 2 j u>25. This is
equal to the first minimum of the autocorrelation function.
After Xi is selected at random,Xj is determined.Xj is speci-
fied by the value ofj closest toi that satisfiesu i 2 j u>25 and
uXi ,Xj u<r . If no value ofj satisfying these criteria exists,Xi
is discarded and another random selection is made.

Another parameter to be specified is the evolution timek.
If k is too small, the noise in the time series could obscure
the separation of trajectories corresponding to false nearest
neighbors. Ifk is too large, the exponential separation of
trajectories in chaotic systems will end and the distinction
between false and genuine nearest neighbors will diminish. It
is therefore necessary to fixk in terms of a natural time scale
of the time series. In our calculations we setk equal to the
autocorrelation time~the time required for the autocorrela-
tion function to drop to 1/e of its initial value!. The depen-
dence of the method on the choice of evolution time is con-
sidered again in the presentation of the method of
characteristic length.

The calculation ofL(k,m,L) can be reduced to the fol-
lowing sequential process.

~1! For a specifiedm,L pair, the mean distance between
points in the embedding space and the standard deviation of
that mean are determined. This can be done by an exhaustive

FIG. 1. L as a function of lagL for the Rössler attractor. The
original time series contains 10 000 points at sampling intervaldt
50.125. Parameterr is 10% of the standard deviation of the origi-
nal data andk59. L is calculated form52,3, . . . ,5 andL
52,3, . . . ,15. Nref5500. The minimum sampling separationu i
2 j u>25.
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calculation of alli,j pairs or by a random sample that is large
enough to achieve a stable value. The local neighborhood
radiusr is specified in terms of the standard deviation of the
time series, for example, 10%.

~2! Nref is specified. This is the number of reference points
Xi that will be randomly sampled from the embedding space.

~3! kseparation, the minimum temporal separation of refer-
ence pointXi and its neighborXj , must be specified. As
discussed in the preceding text, the first minimum of the
autocorrelation function of the original time series can be
used.

~4! The value ofk, the evolution time, must be deter-
mined. We have used the autocorrelation time~the time re-
quired for the autocorrelation function to drop to 1/e of its
original value!.

~5! The following computation is performed for each of
the Nref reference pointsXi randomly sampled from the
embedding space. A pointXj is found that satisfies the
two criteria uXi ,Xj u<r and u i 2 j u>kseparation. If no point
Xj satisfying these conditions can be found, thenXi is
discarded and replaced with another randomly selected refer-
ence point. Using a successfulXi ,Xj pair, the value of
ln$uXi1k ,Xj1ku/uXi ,Xju% is computed.

~6! The average value of ln$uXi1k ,Xj1ku/uXi ,Xju% is deter-
mined. This is the value ofL(k,m,L).

We used the Ro¨ssler equations to generate the results pre-
sented in Fig. 1. The original time series contained 10 000
points, andNref was set equal to 500. The local neighborhood
radiusr is 10% of the standard deviation of the time series.
The evolution timek is 9, which is the corresponding auto-
correlation time.kseparationis 25, which is the first minimum
of the autocorrelation function. The initial embedding dimen-
sion m is fixed at 2 andL is calculated as a function of the
lag L. This process is repeated for increasing values ofm. As
shown in this figure, the value ofL decreases significantly as
m is increased from 2 to 3. However, successive increases in
m do not result in further significant decreases inL. There-
fore it is concluded thatm53 is an appropriate embedding
dimension. The best value ofL corresponds to theL at the
first minimum value ofL in the m53 case. This results in

fixing L58. This result is consistent with those published by
Gao and Zheng@11#. The results obtained when this criterion
was applied to the other time series in the test collection are
reported in Sec. III.

B. Method of Schuster

The procedure for estimating an optimal embedding di-
mension presented by Schuster and his colleagues@29# ex-
amines the relationship between sets of nearest neighbors in
successive embeddings. LetXi

(m) be an embedded point in
Rm, where it should be recalled that the construction ofXi

(m)

includes the specification of the lagL. In this procedure, the
Nn nearest neighbors ofXi

(m) are identified. They are denoted
by Xi ,1

(m) ,Xi ,2
(m) , ...,Xi ,Nn

(m) . They are ordered in the sense that

Xi ,1
(m) is the closest neighbor ofXi

(m) , Xi ,2
(m) is the next closest,

and so on. In their implementation, Liebertet al. set Nn
510 for an example problem containing 10 000 data points.

Liebert et al. consider the impact of increasingm to m
11 on the nearest neighbor set. LetXi

(m11) denote the ele-
ment in Rm11 corresponding toXi

(m) in Rm. Let Xi ,k
(m11)

denote thekth nearest neighbor ofXi
(m11) in Rm11, where

again the nearest neighbors are ordered withXi ,1
(m11) being

the closest toXi
(m11) . It should be stressed that points

Xi ,k
(m11) are defined by their proximity toXi

(m11) in Rm11.
They are not necessarily the projections ofXi ,k

(m) to Rm11.
~We use the term projection to denote a relationship defined
by embedding processes in two consecutive dimensions.!

If an embedding were ideal, then the transition fromRm

to Rm11 would preserve nearest neighbor relationships, and
Xi ,k

(m11) would be the (m11)-dimensional point correspond-
ing to Xi ,k

(m) in Rm. The Liebert et al. metric provides a
means of quantifying the degree to which this relationship
fails to be true. LetZi ,1

(m11) be the point inRm11 correspond-
ing to Xi ,1

(m) , that is, the projection ofXi ,1
m to Rm11. Zi ,k

(m11)

is defined analogously fork52, . . . ,Nn . The relationships
between these points is depicted below;↑ denotes the pro-
jection fromRm to Rm11:

Xi ,Nn

~m11!
¯ Xi ,2

~m11! Xi ,1
~m11! Xi

~m11! Zi ,1
~m11! Zi ,2

~m11!
¯ Zi ,Nn

~m11!
Rm11

↑ ↑ ↑ ↑
Xi

~m! Xi ,1
~m! Xi ,2

~m!
¯ Xi ,Nn

~m!
Rm.

In the case of an ideal embedding,Zi ,1
(m11)5Xi ,1

(m11) and the
ratio

uXi
~m11!2Zi ,1

~m11!u

uXi
~m11!2Xi ,1

~m11!u

is equal to 1. IfZi ,1
(m11)ÞXi ,1

(m11) , then this ratio is greater
than 1. The product

)
k51

Nn H uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!uJ
is an empirical measure of the degree of correspondence be-
tween the sets$Xi ,k

(m11)% and$Zi ,k
(m11)%. A large value of this

product will indicate a distortion of nearest neighbor rela-
tionships that results from an insufficient value ofm.
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The Liebertet al. analysis also considers the relationship
between the nearest neighbor set ofXi

(m11) in Rm11 and the
corresponding set of points inRm. As previously defined,
Xi ,k

(m11) is thekth nearest neighbor ofXi
(m11) in Rm11. Let

Vi ,k
m denote the corresponding point inRm. In analogy with

the previous diagram, the relationship between these sets is
given below. In this case,↓ indicates the projection from
Rm11 to Rm:

Xi ,Nn

~m11!
¯ Xi ,2

~m11! Xi ,1
~m11! Xi

~m11! Rm11

↓ ↓ ↓ ↑
Vi ,Nn

~m!
¯ Vi ,2

~m! Vi ,1
~m! Xi

~m! Xi ,1
~m! Xi ,2

~m!
¯ Xi ,Nn

~m!
Rm.

The corresponding product is

)
k51

Nn H uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!uJ .

For the pointXi
(m) , Liebertet al. defineWi(m,L) as

Wi~m,L !5)
k51

Nn H S uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!u D S uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!u D J .

Wi(m,L) is averaged over a set ofNref points selected ran-
domly in the Rm embedding space. Liebertet al. sample
10% of the embedded points.W(m,L) is defined as

W~m,L !5 ln^Wi~m,L !&,

where

^Wi~m,L !&5
1

Nref
(
i 51

Nref

Wi~m,L !.

As in the case of the Gao-Zheng criterion,m is fixed and
W(m,L) is calculated as a function ofL for progressively
increasing values ofm.

For specified values ofm andL, W(m,L) is calculated by
the following procedure.

~1! Nref , the number of references points to be used, must
be specified. Liebertet al. @29# use 10% of the total.

~2! Nn , the number of nearest neighbors computed for
each reference point, must be specified. Liebertet al. @29#
useNn510.

~3! A reference pointXi
(m) is randomly selected from the

embedded set inRm. For eachXi
(m) , the following calcula-

tions are performed.~a! TheNn nearest neighbors ofXi
(m) are

determined. They are denoted byXi ,1
(m) ,Xi ,2

(m) , ...,Xi ,Nn

(m) . ~b!

The projections of these nearest neighbors intoRm11 are
determined. They are denoted by Zi ,1

(m11) ,
Zi ,2

(m11) ,...,Zi ,Nn

(m11) . ~c! Xi
(m11) is the projection ofXi

(m) into

Rm11. The Nn nearest neighbors ofXi
(m11) are determined.

They are denoted byXi ,1
(m11) ,Xi ,2

(m11) ,...,Xi ,Nn

(m11) . ~d! The

projections ofXi , j
(m11) to Rm are determined. They are de-

noted byVi ,1
(m) ,Vi ,2

(m) , ...,Vi ,Nn

(m) . ~e! The productWi(m,L) is

calculated:

Wi~m,L !5)
k51

Nn H S uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!u D S uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!u D J .

~4! W(m,L) is the logarithm of the average value of
Wi(m,L):

W~m,L !5 lnH 1

Nref
(
i 51

Nref

Wi~m,L !J .

Figure 2 shows plots ofW(m,L) versusL using data from
the previously defined implementation of the Ro¨ssler equa-
tions. The best choice of embedding corresponds to the
smallest value ofm that produces the limiting behavior of
W(m,L). In this example, this is seen to correspond tom
53. The best choice ofL corresponds to the lag at the first
minimum value ofW(m,L) in them53 case. This results in
L58. As an additional test, a time series was generated using

FIG. 2. W(m,L) versus lag for the Ro¨ssler data set. In these
calculations 10 000 points were used.W is calculated form52, 3,
and 4; L52,3, . . . ,15. Number ofreference pointsNref5300.
Number of nearest neighborsNn525.
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the Lorenz equationsdx/dt5a(y2x), dy/dt5x(R2z),
dz/dt5xy2bz, a516.0, R545.92, b54, anddt50.125.
The Liebertet al. procedure was applied to this time series
and produced embedding parameters in agreement with those
found using a procedure published by Wolfet al. @30#.

The most computationally demanding element of this pro-
cedure is the identification of theNn nearest neighbors of
eachXi . ~Similarly, the search for the single nearest neigh-
bor Nn51 which is implemented in the method of global
false nearest neighbors, is the most computationally expen-
sive element of that method.! There is a large literature de-
scribing procedures that can be modified to produce methods
that will accelerate nearest neighbor searches inRm @span-
ning trees@31#, KD trees@32#, K trees@33–36# ~structures for
optimizing orthogonal range searches!#. In our recent calcu-
lations, we used our implementation of Schreiber’s linked-
list search procedure@37#.

C. Method of characteristic length

As previously described, the Gao-Zheng method is based
on the rate of separation of points that are initially close to
each other. It is therefore closely related to the estimation of
the largest Lyapunov exponent. This relationship is devel-
oped explicitly in the next section. There are operational dif-
ficulties associated with the Gao-Zheng method. They turn
on the choice of the evolution time parameterk, which speci-
fies the time over which the divergence of trajectories is
observed. The evolution time before two nearby points be-
come uncorrelated is a function of both the largest Lyapunov
exponent and the initial separation of these points. However,
without some knowledge of the spatial extent of the system’s
attractor, it is difficult to estimate when the evolution time is
too large. The method of characteristic length addresses this
point by estimating the size of the attractor and using this
length in an assessment of the separation time of trajectories
that are close initially. For a given scalar time series, the
characteristic lengthJ(m,L) is a function ofm andL and is
defined as

J~m,L !5^uXi ,Xj u&,

where ^¯& denotes the average Euclidean distance taken
over randomly selected pairs of points in the embedding
space.J(m,L) provides an imperfect measure of the size of
the attractor. In our calculations, the number of pairs of
points used to calculateJ(m,L) was 15% of the number of
embedded points. It should be noted that in the case of
J(m,L) calculations, the choice ofi and j is random and is
not subject to the restrictions oni,j pairs employed in the
calculation ofL(k,m,L).

The argument for indirectly assessing the frequency of
false nearest neighbors with the method of characteristic
length follows a development analogous to that used to con-
struct the Gao-Zheng criterion. Suppose thatXi and Xj ,
points that are initially close in phase space, are true nearest
neighbors. The time required for them to separate to some
fraction of J(m,L) will depend on the Lyapunov exponent.
We denote this separation time asTJ . If, in contrast,Xi and
Xj are false nearest neighbors, they are close to each other
because the embedded set is folded onto itself in a neighbor-

hood containing these points. Under these circumstances, the
time evolution ofXi andXj could display very different dy-
namical behavior. This would typically result in a faster
separation of their trajectories.

On average, therefore, we expect the separation timeTJ
for false nearest neighbors to be shorter than the average
separation time for true nearest neighbors. An average sepa-
ration time is calculated form52 as a function ofL. As m is
increased the frequency of false nearest neighbors is reduced
and the average separation time increases. The embedding
dimensionm is increased until a further increase inm does
not have an impact on the average separation time.

The procedure can be operationalized by the following
sequence of calculations. For a givenm,L pair, C(m,L) is
calculated in the following steps.

~1! The characteristic lengthJ(m,L) is calculated by the
averageJ(m,L)5^uXi ,Xj u&, wherei,j are selected randomly.
The number of pairs used to form the average is equal to
15% of the number of points in the embedding space.

~2! Nref , the number of reference points used in the sepa-
ration time calculations, is specified. In the calculations
shown in Fig. 3, where 10,000 points are in the time series,
Nref is set equal to 500.

~3! A value of r is specified. The specification used in our
implementation of the Gao-Zheng method is also used in the
Fig. 3 calculations. Specifically,r is set equal to 10% of the
standard deviation of the original time series.

~4! The embedded pointXi is chosen at random.Xj is
defined as the value ofj closest toi that satisfies the condi-
tions that u i 2 j u is greater than the signal’s autocorrelation
time and uXi ,Xj u<r . If no value of j satisfying these two
conditions exists,Xi is discarded and another point is se-
lected.

~5! TJ(Xi ,Xj ) is determined. This is the minimum inte-
gerk required foruXi 1k ,Xj 1ku to exceed 0.4J(m,L). If these
points do not separate to this distance,Xi is discarded and
another point is chosen.

FIG. 3. C(m,L) versus lag for the Ro¨ssler data set. In these
calculations 10 000 points were used.r 510% of the standard de-
viation of the data set. C is calculated form52, 3, and 4;L
52,3, . . . ,12. N5500 andu i 2 j u>25.

CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E67, 066210 ~2003!

066210-6



~6! This process is repeated untilNref values ofTJ(Xi ,Xj )
have been obtained.C(m,L) is their average:

C~m,L !5
1

Nref
(
i , j

TJ~Xi ,Xj !.

As shown in Fig. 3,m is first set equal to 2 andC(m,L)
is calculated as a function ofL. The embedding dimension is
then increased andC(m,L) is again calculated. The increase
in C(m,L) that was anticipated by the preceding argument is
observed. Further increases inm do not, however, result in
further increasesC(m,L); therefore it is concluded thatm
53 is an effective choice. The indicated value of lag corre-
sponds to the first maximum ofC(m,L) when m53. This
results inL58. The procedure was also applied to the Lo-
renz time series, and again results consistent with those of
Wolf et al. @30# were obtained.

D. Global false nearest neighbors and the autocorrelation
function

The three methods presented thus far determine the em-
bedding dimension and lag simultaneously. In this section we
combine a method for choosing a proper embedding dimen-
sion, the method of global false nearest neighbors, with a
separate method for determining the lag based on the auto-
correlation function. This criterion for specifying lag sets it
equal to the value of delay corresponding to the first zero of
the autocorrelation function. The autocorrelation function
C(k) for a time seriesxi , i 51,2, . . . ,N is given by

C~K !5

(
i 51

N2k

~xi 1k2 x̄!~xi2 x̄!

(
i 51

N2k

~xi2 x̄!2

where x̄5
1

N (
i 51

N

xi .

The determination of the embedding dimension using a
global false nearest neighbors argument begins with an em-
bedding inRm which uses the lag established using the au-
tocorrelation function. LetXi denote an element in this em-
bedding, and letXi

NN5(xi
NN ,xi 1L

NN ,...,xi 1(m21)L
NN ) denote its

nearest neighbor. The Euclidean distance between these two
points inRm is denoted byuXi2Xi

NNum :

uXi2Xi
NNum

2 5 (
k50

m21

~xi 1kL2xi 1kL
NN !2.

The Euclidean distance between the projection of these two
points intoRm11 is given by

uXi2Xi
NNum11

2 5uXi2Xi
NNum

2 1~xi 1mL2xi 1ml
NN !2.

Abarbanel@38# definesR, a measure of the distance between
Xi and Xi

NN in Rm11 normalized against their distance in
Rm, as

R5H uXi2Xi
NNum11

2 2uXi2Xi
NNum

2

uXi2Xi
NNum

2 J 1/2

,

R5
uxi 1mL2xi 1mL

NN u
uXi2Xi

NNu
.

Xi
NN is deemed to be a false nearest neighbor ofXi in Rm

if R exceeds the constantRtol . The choice ofRtol was dis-
cussed by Abarbanel@38#. We follow his recommendation
here and setRtol515. The use of global false nearest neigh-
bors to determine the embedding dimension is implemented
by the following procedure.

~1! L is set equal to the first zero of the autocorrelation.
~2! Rtol is set equal to a fixed value.
~3! The percentage of false nearest neighbors is calculated

as a function ofm using the following procedure.~a! For
every pointXiPRm, the nearest neighborXi

NN is determined.
~b! The corresponding value ofR is calculated.~c! If R
.Rtol , thenXi

NN is deemed to be a false nearest neighbor of
Xi .

~4! The value ofm is increased until false nearest neigh-
bors are no longer observed or until the frequency of false
nearest neighbors is below an acceptable value.

Figure 4 shows the results obtained with the Ro¨ssler data.
The value of the lag determined from the autocorrelation
function was 9. Using this value of the lag, the procedure
identifiedm54 as the optimal embedding dimension.

E. Global false nearest neighbors and mutual information

This procedure differs from the immediately preceding
method in the criterion used to determine the lag. The same
procedure, global false nearest neighbors, is used to deter-
mine the embedding dimension. Choosing the lagL to be the
first zero crossing ofC(k) means that, on average, the ob-
servationsxi and xi 1L will be linearly independent. This is
the optimal linear choice, from the point of view of predict-
ability in a least squares sense ofxi 1L from a knowledge of
xi . Although historically it has been widely used to deter-
mine the time delay, some authors now question its use when
the underlying process is nonlinear@38#. Abarbanel@38# and

FIG. 4. Percentage of false nearest neighbors versus embedding
dimension for the Ro¨ssler data set. In these calculations 10 000
points were used.m52,3, . . . ,6;L59. The threshold is equal to
15.
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others~notably Fraser@10#! have therefore argued that the
first minimum of the average mutual information function is
a more appropriate choice of the lag, because mutual infor-
mation can be regarded as a nonlinear analog of the autocor-
relation function. The general case of the definition of mutual
information begins with two setsA5$ai% andB5$bj%. The
mutual information is the amount learned by the measure-
ment ofai about the value ofbj . In bits, it is given by

log2F PAB~ai ,bj !

PA~ai !PB~bj !
G ,

wherePAB is the joint probability distribution, andPA and
PB are the individual probability distributions. We note that
if a measurement ofai is completely independent ofbj , then
the amount of information gained aboutbj by measuringai ,
which is the mutual information, is zero. The average mutual

information is defined as the average over all measurements
of this statistic between setsA andB @38#:

I AB5 (
ai ,bj

PAB~ai ,bj !log2F PAB~ai ,bj !

PA~ai !PB~bj !
G .

The specific application to a time series follows immediately
from this definition. As before, letxi , i 51,2, . . . ,N, denote
an observed time series. Define the setA5$ai% as the value
of x at time i, xi , and the setB as the value ofx at time i
1t, xi 1t . The mutual information becomes a function of
the time shift variablet,

I ~t!5 (
xi ,xi 1t

P~xi ,xi 1t!log2F P~xi ,xi 1t!

P~xi !P~xi 1t!
G .

This measure tells us the average amount of information
learned aboutxi 1t by measuringxi . Figure 5 shows the
results using the Ro¨ssler equations. We conclude thatL
512 is the indicated choice.

IV. CALCULATING THE LARGEST LYAPUNOV
EXPONENT FROM A TIME SERIES

As outlined in the Introduction, these five methods for
determining embedding parameters were applied to the three
test cases. The results are displayed in Table I. In that table,
GFNN-A identifies the embedding parameters determined by
the autocorrelation function combined with the method of
global false nearest neighbors and GFNN-MI identifies the
results obtained when the lag was determined by calculating
the mutual information.

The comparative success of these embedding parameters
was assessed by using them in calculations of the largest
Lyapunov exponent. For the purposes of this test, the embed-
ding criterion that produces an embedding which in turn pro-
duces a value for the largest Lyapunov exponent that is clos-

FIG. 5. Mutual information versus lag for the Ro¨ssler data set.
In these calculations 10 000 points were used.

TABLE I. Embedding parameters and Lyapunov exponents calculated by different methods.

Method Rössler
Mackey-Glass

t517
Mackey-Glass

t5150

Embedding parameters
m,L m,L m,L

Gao-Zheng 3,8 3,14 6,26
Schuster 3,9 3,10 3,32

Characteristic length 3,8 4,10 5,17
GFNN-A 4,9 4,18 6,82
GFNN-MI 4,12 4,23 6,82

Lyapunov exponents

Benettin 0.129 0.0071 0.0023
Gao-Zheng 0.128 0.0106 0.0014
Schuster 0.135 0.0092 0.0011

Characteristic length 0.128 0.0073 0.0015
GFNN-A 0.124 0.0089 0.0020
GFNN-MI 0.125 0.0085 0.0020
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est to the Benettinet al. reference value is deemed to be the
most successful. Of the many candidate methods for calcu-
lating Lyapunov exponents from a time series, we chose the
procedure published by Gao and Zheng@12#, which is
closely related to their procedure for identifying appropriate
embedding parameters. The largest Lyapunov exponentl is a
quantitative characterization of the rate at which two initially
close points diverge in phase space under the assumption that
this separation is exponential,

uXi 1k ,Xj 1ku5uXi ,Xj ueldt,

wheredt is the sampling interval. As in the case of estimat-
ing embedding parameters with the Gao-Zheng method, the
choice of Xi ,Xj pairs cannot be arbitrary. First, the points
must be close initially. Therefore, as before, we require
uXi ,Xj u<r where r is expressed in terms of the standard
deviation of the original time series. Second, the points must
have a minimum initial temporal separation; that is, we re-
quire u i 2 j u>kseparationwherekseparationis expressed in terms
of the autocorrelation function. If these conditions are met,
and if the separation ofXi and Xj is exponential, then the
average value of ln$uXi1k ,Xj1ku/uXi ,Xju% when plotted as a
function of time will be linear and have the slopel. An
example using the Ro¨ssler time series is shown in Fig. 6. The
function

1

Nref
(
i , j

lnH uXi 1k ,Xj 1ku
uXi ,Xj u

J
is plotted as a function of time for six values ofr ~1%,
2%, . . . ,6% of thestandard deviation of the time series!.
This function exhibits a linear region with a slope that is
independent ofr, followed by a region where the slope tends
to zero. The slope is approximately 0.07, which is in agree-
ment with previously published estimates@30#. The results

obtained when this procedure for estimatingl was applied to
the test systems are given in Table I.

Table I shows the embedding parameters and Lyapunov
exponents generated by each method. Calculations using the
Rössler time series produced similar embedding parameters,
and in all cases the Lyapunov exponents were close to the
Benettin reference value. In the trials using the Mackey-
Glass system witht517, some differences in embedding
parameters and performance were observed. The characteris-
tic length, GFNN-A, and GFNN-MI methods give a some-
what better performance. It is only in the group of calcula-
tions that examine the Mackey-Glass system witht5150
that we begin to see a notable difference in performance. In
this case, only the GFNN-A and GFNN-MI methods resulted
in an estimated exponent that was close to the reference
value. While one might argue that the characteristic length
was better for the Ro¨ssler system and thet517 Mackey-
Glass system, only the two global false nearest neighbor
methods performed reasonably well in all three trials.

V. EXPERIMENTAL DATA AND SENSITIVITY TO NOISE

A long and melancholy history demonstrates that proce-
dures that are successful in the examination of computation-
ally generated noise-free data can fail when applied to noisy
time series. This concern motivated the next phase of the
investigation in which the robustness of the embedding cri-
teria to noise is investigated.

The three model systems used in the earlier investigation
~Rössler, Mackey-Glasst517, and Mackey-Glasst5150)
were used. Two experimental time series were also added to
the test collection. The first is an electroencephalographic
time series recorded during a clinically induced generalized
seizure. Details of the recording protocol are given by Cel-
lucci et al. @39#. The second experimental time series is a
resting, eyes-closed electroencephalogram~EEG! recorded
from a healthy control subject. Watanabeet al. @40# de-
scribed the recording procedure. The incorporation of experi-
mental data into the study raises a procedural dilemma. In
the case of the computational systems, the Benettinet al.
@24,25# procedure could be used to obtain high quality refer-
ence values for the Lyapunov exponents. In the case of the
experimental data, this is not an option. We must therefore
identify an alternative procedure for assessing an embedding
criterion’s robustness to noise. We operationally define a cri-
terion as robust if the computational addition of noise to the
original time series has a minimal impact on the cumulative
distribution of interpoint distances in the embedding space.
This is implemented in the following five-step procedure.

~1! Let S denote the original time series. The embedding
criterion is applied toS to produce embedding parametersm
andL.

~2! The time seriesS is embedded using these parameters
and the cumulative distribution of interpoint distances in the
embedding space is calculated as a function of scale variable
r. If there areN data points inS, then there areK5N2(m
21)L points in the embedding space. LetNP denote the

FIG. 6. L versus evolution timek for the Rössler data set. In
these calculations 10 000 points were embedded using the embed-
ding parameters m53 and L58. Neighborhood size r
51%,2%,...,6% of the timeseries’ standard deviation.Nref

5500. The top line corresponds tor 51%, and the bottom corre-
sponds tor 56%. u i 2 j u>40.
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number of distinct pairs of points. The cumulative distribu-
tion CS(r ) is given by

CS~r !5
1

NP
(
i 51

K21

(
j 5 i 11

K

Q~r 2uXi2Xj u!

whereQ is the Heaviside function.
~3! Gaussian distributed noise is added to the time series

S. The amplitude of noise is determined by a previously
specified signal to noise ratio. The resulting time series is
denotedS* . The same embedding criterion is applied toS*
to produce embedding parametersm* andL* .

~4! Using m* andL* , the cumulative distribution ofS* ,
CS* (r ), is computed.

~5! The two cumulative distributions are compared using
the Kolmogorov-Smirnov statistic@41,42#. The Kolmogorov-
SmirnovD is the maximum value of the absolute difference
between two cumulative distributions:

D5 max
2`,x,`

uCS~r !2CS* ~r !u.

The null hypothesis holds that the two data sets are drawn
from the same parent distribution. The probability of the null
hypothesis is given by

Pnull5QKSH FANE10.121
0.11

ANE
GDJ ,

QKS~l!52(
j 51

`

~21! j 21e22 j 2l2
,

NE5
N1N2

N11N2
,

whereN1 andN2 are the number of points in theS andS*
embedding spaces. SinceS* is constructed by adding noise
to S, N1 andN2 are equal.

Operationally, an embedding criterion is deemed to be
robust to noise if noise has a minimal impact on the cumu-
lative distribution of interpoint distances in the embedding
space. This is indicated by a high value ofPnull . The results
are presented in Table II. A value of ‘‘no result’’ is entered in
this table if the embedding criterion in question failed to
converge on values ofm and L. Three noise levels corre-
sponding to signal-to-noise ratios of 10, 5, and 0 dB were
computed.

Once again there is little criterion-dependent difference in
the results obtained with the Ro¨ssler data. All of the methods
with the exception of the Gao-Zheng method are robust to a
signal-to-noise ratio~SNR! of 5 dB ~that is, a noise variance
that is approximately 32% of the signal variance!. They all
fail uniformly at 0 dB, where the noise variance and the
signal variance are equal. In the trials using the Mackey-
Glass equation, we see a somewhat larger difference in per-
formance among the methods. The Gao-Zheng, characteristic
length, GFNN-A, and GFNN-MI methods all perform well
down to a SNR of 5 dB. Strangely, Schuster’s method per-
formed better at the lower SNR of 0 dB than it did at 10 dB.
Repeated trials produced similar results, and we can offer no
reasonable explanation for this particular outcome.

In the trials using experimental data, we note even larger
differences in performance among the five methods. In addi-
tion to GFNN-MI outperforming the other four methods, we

TABLE II. Kolmogorov-SmirnovPnull .

Gao-Zheng Schuster
Characteristic

length GFNN-A GFNN-MI

Rössler
10 dB 0.914 0.999 0.999 0.999 0.999
5 dB 0.513 0.989 0.999 0.999 0.999
0 dB 0.002 0.014 0.179 0.084 0.152

Mackey-Glass,t517
10 dB 0.999 0.295 0.927 0.999 0.999
5 dB 0.999 0.999 0.999 0.999 0.999
0 dB 0.124 0.401 no result 0.013 0.013

Mackey-Glass,t5150
10 dB 0.999 0.362 0.999 0.999 0.999
5 dB 0.999 0.999 0.999 0.999 0.942
0 dB no result 0.999 no result 0.213 0.055

EEG seizure
10 dB no result 0.999 0.999 0.999 0.999
5 dB no result 0.999 no result 0.845 0.999
0 dB no result 0.484 no result 0.065 0.972

EEG rest
10 dB 0.999 0.999 0.999 0.999 0.999
5 dB 0.999 0.557 0.999 0.998 0.999
0 dB 0.596 0.999 0.999 0.186 0.999
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also note the failure of the Gao-Zheng and characteristic
length methods to specify embedding parameters for these
trials. Specifically, in the trials using seizure data, the char-
acteristic length method failed for SNR’s of 5 dB and lower.
Additionally, the Gao-Zheng method failed for the original
as well as the noise corrupted data sets for the case of the
seizure data. These time series are apparently too noiselike to
produce interpretable results when the Gao-Zheng and char-
acteristic length procedures are applied.

VI. CONCLUSIONS

We conclude that in these trials the global false nearest
neighbors method outperformed the other three procedures
for determining the embedding dimension. Additionally,
when used in combination with GFNN, the first minimum of
the mutual information function gave a more successful
value of the lag than the first zero of the autocorrelation
function. However, before generalizing these results inappro-
priately, other factors should be considered. One must ask, is
a given method consistent in its interpretation? That is, could
different researchers interpret the results in the same way? In
this regard, GFNN-A has advantages over the other methods.
A disadvantage that those procedures share is the need to
estimate where a maximum or minimum of some function
has occurred. While in principle this is simple, time series
that are very complex or noise corrupted can make this a
difficult task. One sometimes has to choose between what
could be a sharp but specious minimum caused by noise and
what appears to be a more general trend. These complica-
tions of interpretation can lead to conflicting results. This is a
problem that we have considered in our earlier work on es-
timating lag using the minimum of mutual information@43#.
In that contribution, we suggested that the minimum might
be estimated by first filtering the mutual information func-
tion.

Another disadvantage of the methods of Gao and Zheng,
Schuster, and characteristic length is that, in addition to lo-
cating an extremum, one needs to decide if a significant
change has occurred as the embedding dimension is in-
creased. Potential difficulties in this regard can be seen in the
diagrams of Sec. III. As originally published, these methods
require subjective assessments that could cause different
conclusions to be drawn from the same calculations. Global
false nearest neighbors has an advantage over these methods
because the indicated choice of embedding dimension is the
minimum dimension for which the number of false nearest
neighbors is zero or consistently below some explicitly
specifiable threshold. There is no uncertainty in the interpre-
tation of the results. Also, if an efficientN logN procedure is
used to locate nearest neighbors, the method of global false
nearest neighbors is significantly faster than the others.

We conclude by reiterating a limitation of this investiga-
tion that was made in the Introduction. These comparative
computations have identified global false nearest neighbors
combined with the first minimum of the mutual information
function as the best procedure for identifying embedding pa-
rameters for these data. Strictly, these results are valid only
for these data and these specific tests. While it is hoped that

these results provide generally useful guidelines, this gener-
alization has not been demonstrated mathematically.
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APPENDIX: EMBEDDING OBSERVED DATA

Let the set$x1 ,x2 ,x3 ,...%, xjPR, @1# denote the sequen-
tial measurements of an observed signal. They can be voltage
values recorded from an EEG or a sequence of heart inter-
beat intervals. These values are used to create a set of em-
bedded points$Xj%PRm, where

Xj5~xj ,xj 11 ,xj 12 ,...,xj 1m21!

~the case of a nonunitary value of the lag will be considered
presently!. The parameterm is the embedding dimension.
The criterion for selectingm and generalizations of the em-
bedding procedure will be discussed presently. The time-
dependent behavior of$Xj% is the trajectory in an
m-dimensional space specified byX1→X2→X3→¯ . The
analysis of the original time series$xj% proceeds as an ex-
amination of the geometry of them-dimensional set$Xj%.
This is motivated by the Takens-Man˜é embedding theorem
@1,2#, which shows that the dynamical properties of the sys-
tem that generated the observed signal are reflected in$Xj%.
A simplified statement of the theorem follows.

It is assumed that the observed signal is generated by a
dynamical system composed ofv real variables. For com-
plex systems,v will be very large, and not allv variables
will be directly observable. As a function of time the dy-
namical system moves on a compact behavior spaceP which
is a subset ofRv. The compactness~bounded and closed! of
the behavior space is an assumption. However, we could
never contradict it with real data.P is also called the state
space or the phase space. In abstract terms the dynamical
system is a continuous mapC acting on the behavior space,
C:P→P. For any given initial pointy, yPP#Rv, the state
of the system at timet is given by C t(y). The object of
signal analysis is to infer properties ofC from $xj%, in this
case by an examination of$Xj%.

Let yjPP denote the position of the true system at thei th
sample time. The valuexjPR1 is the value of the observed
scalar variable at that time. It is assumed thatxj is related to
yj by a smooth mapc, c:P→R1, such thatc(yj )5xj for all
j. Additionally, it is assumed that the set ofyj ’s correspond-
ing to the observedxj ’s forms a dense subset ofP. F is
defined as follows. For any integerm, m.2v, define
F:P#Rv→Rm by
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F~y!5„c~y!,c~C~y!!…,c„C2~c!…,...,c„Cm21~y!….

SinceC(yj )5yj 11 andc(yj )5xj

F~yj !5~xj ,xj 11 ,xj 12 ,...,xj 1m21!.

Theorem. ~1! For almost anyC andc, F is an embedding.
That is, P is diffeomorphic to its image underF. ~2! The
continuous extension mapXj→Xj 11 corresponds, under the
diffeomorphism, to the original mapC. Therefore, the ob-
served trajectoryXj→Xj 11 is intimately related to the true,
high dimensional systemC. Specifically, the relationship is a
diffeomorphism ~a differentiable function with a differen-
tiable inverse!. Properties ofXj→Xj 11 as established by ob-
served data will, up to a diffeomorphism, also be true ofC.
Thus if the conditions of the theorem are met, we can make
meaningful inferences aboutC from $Xj%.

This is a remarkable result. It states, subject to the condi-
tions of the theorem, that we can perform an analysis of an
v-dimensional dynamical system based on observations of a
single variable. However, in the real world the conditions of
the theorem are never met. The crucial assumption is that the
set ofyj ’s corresponding to the observedxj ’s forms a dense
subset of behavior spaceP. This is clearly impossible given
a finite data set$xj%. Nonetheless, as an approximation,Xj
→Xj 11 can provide valuable insights intoC. Since$xj% is
finite, a number of practical issues arise. Recall the definition
of Xj :

Xj5~xj ,xj 11 ,xj 12 ,...,xj 1m21!.

A revision of this definition that incorporates a lagL, L
PI 1, can help space the observed data through the approxi-

mate behavior space and thus better approximate the density
requirement of the theorem:

Xj5~xj ,xj 1L ,xj 12L ,...,xj 1~m21!L!.

This can be addressed in the preceding analysis by incorpo-
rating a dependence onL into the definition ofC.

Limitations imposed by the finite size of$xj% can be ad-
dressed in part by observing more than one dynamical vari-
able. The embedding procedure can be generalized to incor-
porate multichannel data@4#. Suppose data are recorded from
K observed variables. Let$xj

i % denote the time series of the
i th channel:

$xj
i %5~x1

i ,x2
i ,x3

i ,...!.

The easiest procedure is to construct the embedded set inRK

by

Xj5~xj
i ,xj

2,...,xj
K!.

For example, if three variablesw, x, andy are recorded,$Xj%
can be formed inR3 by

Xj5~wj ,xj ,yj !.

This procedure can fail ifK, the number of observed vari-
ables, is less than the effective dimension of the generating
dynamical system. In that case, the procedure for embedding
scalar data to an arbitrary dimension can be generalized:

Xj5~xj
1,xj

2,...,xj
K ,xj 11

1 ,xj 11
2 ,...,xj 11

K ,...!.
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