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Comparative study of embedding methods
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Embedding experimental data is a common first step in many forms of dynamical analysis. The choice of
appropriate embedding parametétsnension and lagis crucial to the success of the subsequent analysis. We
argue here that the optimal embedding of a time series cannot be determined by criteria based solely on the
time series itself. Therefore we base our analysis on an examination of systems that have explicit analytic
representations. A comparison of analytically obtained results with those obtained by an examination of the
corresponding time series provides a means of assessing the comparative success of different embedding
criteria. The assessment also includes measures of robustness to noise. The limitations of this study are
explicitly delineated. While bearing these limitations in mind, we conclude that for the examples considered
here, the best identification of the embedding dimension was achieved with a global false nearest neighbors
argument, and the best value of lag was identified by the mutual information function.

DOI: 10.1103/PhysRevE.67.066210 PACS nunider05.45-a

[. INTRODUCTION the minimal result should be the identification of those em-
bedding methods that are most appropriate for a specific time
Embedding experimental data is a first step common tseries and applied measure. This is, however, a better alter-
many forms of dynamical analysis. In this process a scalanative than arbitrary parameter specification.
time seriegx;,X,,... X} is used to construct vectors A" An examination of the prior literature on this subject re-
of the formXi=(X; ,Xj+L.Xi+2L,---Xi+m-1)), Wwheremis  veals a most interesting problem. Suppose two embedding
the embedding dimension ahds the lag. For proper values criteria are used to select embedding parameters for a time
of mandL a smooth dynamicB: X;— X;, ; is defined which  series. Let fn,,L;) and (m,,L,) denote the results. Which
reconstructs the underlying dynamics. Measures of dynamis the better embedding? To answer this question we need an
cal behavior are then based on the quantitative characterizadjudicating measuré, such that ifM;=M(my,L;) is
tion of the mdimensional geometry of the s¢X;}. The  greater tharM,=M(m,,L,) we conclude that the first em-
mathematical foundation of this procedure is the Takensbedding is the better of the two. Following this reasoning, a
Mane embedding theorenii1,2]. This result has been re- program of comparison testing of embedding criteria consists
viewed by Noake$3] and Sauer, Yorke, and Casdagli. A of two elementsi(i) competing embedding criteria that are
summary statement of the theorem is given in the Appendixused to select embedding parametarsand L, and (ii) a
The choice of embedding parametarsindL is crucial to  metricM that is used to choose between them. Unfortunately,
the subsequent analysis. An inappropriate choice can resuhis program has a fundamental logical flaw. The adjudicat-
in the spurious indication of nonlinear structure where nonéng measuréM is itself an embedding criterion. By construc-
is presen{5,6]. Conversely, an inappropriate choice can re-tion, the best embedding is then(L) pair that maximize$/.
sult in the failure to resolve structures that are indeed presefithe selection of an embedding therefore becomes a con-
in the data. There is a large, growing, and somewhat conflictstrained optimization: maximizel (m,L) subject to the con-
ing literature describing candidate criteria for selecting em-traints thatm and L are positive integers, but this analysis
bedding parametefg—22]. does not, and cannot, identif}. A circular logic has resulted
There is no single correct answer. The optimal embeddingn which embedding criteria are assessed by an adjudicating
strategy may depend on both the time series and the appliestiterion which is itself an embedding criterion. The reason-
measure. That is, the embedding criterion that is optimaing outlined above leads to the following conclusion: the
when studying fluid flow data may not be optimal in the optimal embedding for a time series cannot be determined by
analysis of a time series from an electroencephalograncriteria based solely on the time series its@H. this context,
Similarly, a procedure for selecting andL when the corre- we wish to acknowledge the importance of Rapoport’s work
lation dimension is to be estimated may not succeed whefR3] on the analysis of paradgxFailure to recognize this
calculating Lyapunov exponents. Therefore the limitations ofpoint has resulted in an embedding criterion—adjudicating
this investigation should be explicitly recognized. While op- measure—embedding criterion circularity that has character-
timistically we hope to distinguish the methods that are efized much of the literature on this subject.
fective for a majority of time series and applied measures, In order to break this cycle, we must bring to the analysis
knowledge that cannot be provided by the time series itself.
We can accomplish this by basing our investigation on the
* Author to whom correspondence should be addressed. analysis of time series that were generated by dynamical sys-
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tems that have explicit analytical representations agrajectory on the attractor was computed with a time interval
n-dimensional differential or functional differential equa- of 6t=0.10. The third system is identical to the second ex-
tions. Because the analytical representations are availableept that the time delay is set equalite 150.

we can apply forms of analysis that cannot be applied to the The largest Lyapunov exponent of each of these systems
time series itself. Specifically, we can use procedures fowas calculated by a procedure published by Benetial.
determining the largest Lyapunov exponent that require$24,25 that exploits the availability of analytical expressions
equations for the vector field throughout the state space corfer the vector field in the behavior space. The analysis begins
structed by Benettiret al. [24,25. These values provide a by considering a smalt-dimensional sphere of initial con-
gold standard for subsequent comparisons. The first phase ditions. Over time this sphere evolves into an ellipsoid. The
the investigation proceeds in five steps. Lyapunov exponents determine the rate of its growth. In the

(1) Three model systems whose governing equations caBenettin et al. computational procedure, the trajectories of
be expressed analytically are identified and time series angoints on the surface of the sphere are approximated by the
generated from each of them. action of the linearized equations of motion. The vectors are

(2) The largest Lyapunov exponents of these systems anepeatedly reorthonormalized using the Gram-Schmidt pro-
determined using the analytical expressions of the vectotedure. The Gram-Schmidt reorthonormalization does not af-
field. fect the direction of the first vector in this system, so it tends

(3) Five criteria for selecting embedding parameters arg¢o seek out the direction in tangent space corresponding to
described and applied to the time series generated by tht@e most rapid growth. This provides an estimate of the larg-
model system. est Lyapunov exponent. The values of the Lyapunov expo-

(4) Using these embedding parameters, the largestents were found to be 0.12%Rossled, 0.0071 (Mackey-
Lyapunov exponent of each time series is calculated for th&lassr=17), and 0.0023Mackey-Glassr=150).
five sets of embedding parameters using a procedure pub-
lished by Gao and Zhengl2] that can be applied to time
series data.

(5) The Lyapunov exponents computed from the time se-  As previously stated, an inappropriate choice of embed-
ries are compared against those determined by the more eding dimension can result in a failure to characterize the
haustive analytically based calculations. The criterion thaktructure of the time series. i is too small, the embedded
most consistently reproduces the reference values of thganifold is folded onto itself, and elements of its structure
Lyapunov exponents is deemed to be the most successful.will be lost to the analysis. However, a strategy of simply

The second phase of the investigation examines the raising a very large embedding dimension for all cases is even
bustness of these conclusions when sensitivity to noise iess successful. The data requirements for the analysis in-
considered. This component of the analysis includes bot@rease with the embedding dimension. If the valuamois

Ill. EMBEDDING CRITERIA

computationally generated and experimental data. too great, structure is dispersed through a high dimensional

space, and the time series is indistinguishable from noise.

Il. SPECIFICATION OF THE EXAMPLE SYSTEMS AND Thus we conclude that the embedding dimension must be
THEIR LARGEST LYAPUNOV EXPONENTS large enough but no larger.

. , L Several methods have been developed to estimate the
Three example systems will be considered in this studyyinimum acceptable embedding dimens[a17,20,29. In
The first is the Resler systeni26]:

this paper we compare methods based on the concept of
dx/dt=—(y+2) minimizing the number of false nearest neighbors. Xgbe

' an embedded point ilR™, and letX; be the point closest to
it. Consider the map ok; andX; from R™ to R™" . If the

dy/dt=x+ ay, . : . .
(m+1)-dimensional points are no longer nearest neighbors,
dz/dt=B+z(x— ), thenX; andX; in R™ are false nearest neighbors. False near-
est neighbors can result when the embedded manifold is
a=0.15, =0.20, y=10.00, St=.125. folded onto itself inR™. When the embedding dimension is

increased, an unfolding of the embedded set can sepdrate
A 10 000-element time series was computed after the trajecnd X;. The argument of false nearest neighbors concludes
tory converged onto the attractor using a sixth order Rungethat the minimum acceptable embedding dimension can be
Kutta-Hutta algorithm[27]. The second system is the established by determining a measure of the frequency of

Mackey-Glass equatiof28]: false nearest neighbors as a function of embedding dimen-
sion. The optimal embedding dimension, is the smallest
dsddt ax(t—17) b dimension that results in a stable minimum of this measure.
= — X,

Thus, the underlying assumption of the methods com-
pared in this paper holds that, whem<m,, and mis in-
a=0.20, b=0.10, ¢=10.00, 7=17. creased frommto m+ 1, the metric that is used to reflect the
frequency of false nearest neighbors will decrease. rRor
The parameterr is a time delay. Thus, this is an infinite =mgy, further increases in the embedding dimension will
dimensional functional differential equation. A 10 000-point not result in a significant decrease in this metric. All of the

T
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criteria compared in this paper are constructed on this argu- ' - - - - '
ment. They differ, however, in the metric that is used to

characterize the frequency of false nearest neighbors. The
choice of this metric is by no means triviad; andX; in ™

can be false nearest neighbors under this definition even
though the data were appropriately embedded. This can hap
pen because they were positioned on opposite sides of ¢
separatrix or, more commonly, as the result of noise in ob-
served data. A simple exhaustive calculation of the frequency
of false nearest neighbors is not necessarily the most suc:
cessful. Measures that, for example, incorporate a time his-
tory of local trajectories centered of) and X; might prove

to be more robust against noise. This is one of the questions
examined in this investigation.

A. Method of Gao and Zheng LAG

Gao and Zhend11,12 use the fo",ow,'ng argument to FIG. 1. A as a function of lag. for the Rasler attractor. The
construct a measure that reflects the incidence of false nea(SFiginal time series contains 10 000 points at sampling intedtal

est neighbors. Consider two vectots and X; . If they are  _ 125 parametaris 10% of the standard deviation of the origi-
genuine nearest neighbors, and if the flow is uniform in thisha| data andk=9. A is calculated form=2,3,...,5 andL
region of the state space, thé@, and X;, will also be =23 ... 15 N,=500. The minimum sampling separation
close to each other for smadl The statistical nature of this —j|=25.

argument is apparent when it is recognized that domains of

thg state space where f_I(_)w separates provide exce_ptions rthponding data points X, were sampled at approximately

this gen_eral!zatlon. Addmonally_, _for bounded chaotic Sys-ihe same time. If an oversampled signal is being examined,
tems, this will cease to be truekfis large. IfX; andX; are  hjs can lead to a spurious indication of structure in the state
false nearest neighbors, they are, by definition, close to eadhace. In order to control against this possibility, we impose
other only because the embedded set has been folded on{osecond condition ok, namely, a minimum elapsed time

itself in a neighborhood containing these points. Therefore,.tveen sampled daté poirs and X; . This is done by
the flow c_ontr_oll_lng the evolution oX; in state space is not requiring|i —j| to be greater than sonJ1e minimum temporal
necessarily similar to .the flow contrplllng the evolytlon .of spacing, denotellgeparaion Which can be expressed in terms
X; . Compared to genuine nearest neighbors, there is a highg {he autocorrelation time. This is an application of a pro-

probability that the trajectories correspondingXpandX;  cequre originally introduced by Theilgs4] in the specific

will separate. , _context of calculating the correlation dimension. In the cal-
The method of Gao and Zheng is based on the following,jations shown in Fig. 1, we requirdi—j|=25. This is

argument. LetX;,X;| denote the Euclidean distance betweengqual to the first minimum of the autocorrelation function.
points X; and X; . Typically, [X; . X l/[X;, X;| will be  afier X; is selected at randoriX; is determinedX; is speci-
greater |_in andxj are falsg nearest neighbors. A suc_cessf_ulﬁed by the value of closest td that satisfiesi —j|=25 and
embedding is one that will, on average, reduce this ratlorxi X;|<r. If no value ofj satisfying these criteria exist¥;
Therefore, they construct the following measure: is discarded and another random selection is made.

1 X Xl Another parameter to be specified is the evolution tkne
—> |n[M] If k is too small, the noise in the time series could obscure
Nres 17 |Xi 'XJ| the separation of trajectories corresponding to false nearest

neighbors. Ifk is too large, the exponential separation of
From this equation it is seen that four parameters must be&ajectories in chaotic systems will end and the distinction
specified,N,ef, k, m, and L. In our implementation of the between false and genuine nearest neighbors will diminish. It
Gao-Zheng criterion, the average is taken frbip; points is therefore necessary to fixin terms of a natural time scale
X;, randomly selected from points in the embedding spaceof the time series. In our calculations we getqual to the
In the calculations of Fig. 1, 10 000 data points are used andutocorrelation timgthe time required for the autocorrela-
N.r=500. After X; has been chosen, ax; is found that tion function to drop to ¥ of its initial value. The depen-
satisfies two criteria. First, we requif; ,X;|=<r, thatis, the dence of the method on the choice of evolution time is con-
average is taken over points that are initially close to eaclsidered again in the presentation of the method of
other. For example, in the calculations shown in Figr Is  characteristic length.
10% of the standard deviation of the time series. Numerical The calculation ofA (k,m,L) can be reduced to the fol-
experiments indicated that the results are robust againgdwing sequential process.
variations inr. This condition alone is insufficiently restric- (1) For a specifiedn,L pair, the mean distance between
tive. If this were the sole criterion used to sel¥gt A could  points in the embedding space and the standard deviation of
emphasize those points that are clos&{decause the cor- that mean are determined. This can be done by an exhaustive

A(k,m,L)=
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calculation of alli,j pairs or by a random sample that is large fixing L=28. This result is consistent with those published by
enough to achieve a stable value. The local neighborhoo@ao and Zhen§l1]. The results obtained when this criterion
radiusr is specified in terms of the standard deviation of thewas applied to the other time series in the test collection are
time series, for example, 10%. reported in Sec. lIl.

(2) Nyt is specified. This is the number of reference points
X; that will be randomly sampled from the embedding space.

(3) Kseparation the minimum temporal separation of refer- B. Method of Schuster
ence pointX; and its neighboiX;, must be specified. As The procedure for estimating an optimal embedding di-
discussed in the preceding text, the first minimum of themension presented by Schuster and his colleaf2@lsex-
autocorrelation function of the original time series can beamines the relationship between sets of nearest neighbors in
used. o successive embeddings. L¥f™ be an embedded point in

(4) The value ofk, the evolution time, must be deter- ,m \yhere it should be recalled that the constructioiXg?
mined. We have used the autocorrelation fiftie time re-  jqcjydes the specification of the Idg In this procedure, the
quired for the autocorrelation function to drop tee f its N, nearest neighbors in(m) are identified. They are denoted

original value. (M) (m) (m) :
(5) The following computation is performed for each of by X7, Xi2',. - XiN, - They are ordered in the sense that

the N, reference pointsxX; randomly sampled from the X{7 is the closest neighbor (xi(m)!_xi(,rg) is the next closest,
embedding space. A poinX; is found that satisfies the and so on. In their implementation, Liebest al. set N,
two criteria | X; ,Xj|$r and |i—i|>kseparaﬁon If no point =1Q for an example_problem_contamlng 10 OOO_ data points.
X; satisfying these conditions can be found, th¥n is Liebert et al. consider the impact of increasing to m
discarded and replaced with another randomly selected refer= 1 on the nearest neighbor set. ™" *) denote the ele-
ence point. Using a successfifi ,X; pair, the value of ment in ™! corresponding tox(™ in |\™. Let X(T+Y

In{[Xi . X /X X[} is computed. _ denote thekth nearest neighbor of{™*%) in ™1, where
(6) The average value of {{Xi..X;./|X; X[} is deter-  again the nearest neighbors are ordered WitA™") being
mined. This is the value ok (k,m,L). the closest toX(™*1) . It should be stressed that points

We used the Resler equations to generate the results pre
sented in Fig. 1. The original time series contained 10 00
points, and\ s was set equal to 500. The local neighborhood
radiusr is 10% of the standard deviation of the time series

The evolution timek is 9, which is the corresponding auto- If an embedding were ideal, then the transition frtR

correlation time KggparationiS 25, which is the first minimum mel ) . )

of the autocorrelatign function. The initial embedding dimen-to(niﬁl) would preserve nearest ne_|ghbor r_elatlonshlps, and
sionmis fixed at 2 andA is calculated as a function of the Xi.k W%”'g be the (n+1)-dimensional point correspond-
lag L. This process is repeated for increasing valuemoks g to X{R in 9™ The Liebertet al. metric provides a
shown in this figure, the value df decreases significantly as Mmeans of quantifying the degree to which this relationship
mis increased from 2 to 3. However, successive increases iils to be true. LeZ{7**) be the point ifA™** correspond-

m do not result in further significant decreasesAinThere-  ing to X7, that is, the projection o[’y to R™*%,  z(T*1)

fore it is concluded thain=3 is an appropriate embedding is defined analogously fok=2, ... N,. The relationships
dimension. The best value &f corresponds to the at the  between these points is depicted beldwglenotes the pro-

first minimum value ofA in the m=3 case. This results in jection from9%R™ to W™ 1:

(1) are defined by their proximity t&x(™"") in |m™*1,

hey are not necessarily the projectionsXf) to "™,
(We use the term projection to denote a relationship defined
‘by embedding processes in two consecutive dimensions.

+1 +1
Xi(mln) Xi(yrr21+1) X§T+1) Xi(m+1) Zi(,TH) Z§g+1) Zi(,"&n) sRM+1
7 7 7 7
(m)
XmooxD Xy MR
|
In the case of an ideal embeddirgf];""=X{7"" and the No (| (L) Z(me 1)
ratio ’
] |xi(m+l)_xi(m+1)|
1 +1
X{" =z
| X(MFD) _ x(m+1)| is an empirical measure of the degree of correspondence be-

tween the set$X(}* P} and{Zz{*1}. A large value of this
is equal to 1. IfZ{T* V= X(T*Y then this ratio is greater product will indicate a distortion of nearest neighbor rela-
than 1. The product tionships that results from an insufficient valuenof
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The Liebertet al. analysis also considers the relationship\/imk denote the corresponding point ™. In analogy with

between the nearest neighbor sex@f 1 in R tand the  the previous diagram, the relationship between these sets is
corresponding set of points i™. As previously defined, given below. In this case| indicates the projection from
XM+ is thekth nearest neighbor of™* ) in R™ 1. Let  ,|M™*! to R™

Xi(m':l) X§2+1) Xi(T+1) Xi(m+1) spm+1
| 1 1 T
VIR, Vi ovip x™ X Xy XN,
|
The corresponding product is projections ofX(T* to &™ are determined. They are de-
Ny (X ) noted byV{? V(% ...V . (¢) The productw;(m,L) is
( '(m)—'n':)} _ calculated:
et (XM= ViR N (m+1)_ >(m+1) (M) se(m)
W (m L):ﬁ |Xi =ZVN (M=
For the pointX(™ | Liebertet al. defineW;(m,L) as B [\ XD X  xm - v ]
Np X(M+1) _ Z(m+1) (M) _ y(m) (4) W(m,L) is the logarithm of the average value of
W-(m L):H | i ik | | i |,k| W-(m L)'
i ' ] |Xi(m+1)_xi(,nk]+l)| |Xi(m)_vi(,nk])| i L)
Nref
W;(m,L) is averaged over a set &f points selected ran- W(m,L)= '”[ Nrefizl Wi(m'L)] :
domly in the ™ embedding space. Liebeet al. sample
10% of the embedded pointé/(m,L) is defined as Figure 2 shows plots div(m,L) versusL using data from
the previously defined implementation of the Rter equa-
W(m,L)=In{W;(m,L)), tions. The best choice of embedding corresponds to the
smallest value ofmn that produces the limiting behavior of
where W(m,L). In this example, this is seen to corresponadrio
=3. The best choice df corresponds to the lag at the first
Nyef minimum value ofW(m,L) in them=3 case. This results in
(W,(m,L))= N_E Wi(m,L). L =8. As an additional test, a time series was generated using
refi=1

3
25210 . , : . : ,

As in the case of the Gao-Zheng criterian,is fixed and
W(m,L) is calculated as a function af for progressively
increasing values af. 2

For specified values ah andL, W(m,L) is calculated by
the following procedure.

(1) Nef, the number of references points to be used, must 45
be specified. Liebentt al. [29] use 10% of the total.

(2) N,,, the number of nearest neighbors computed for
each reference point, must be specified. Lielegral. [29] 1
useN,=10.

(3) A reference poimxi(m) is randomly selected from the
embedded set ifR™. For eachX("™, the following calcula- 0s
tions are performeda) TheN, nearest neighbors (Xi(m) are
determined. They are denoted b(;?f‘f),xff‘;),...,x§f}“\‘)n. (b)

W(m,(L)

" 2 1 H

4 ] 8 10 12 14 16

(=]

The projections of these nearest neighbors #%8"! are 2 LAG

determined. They are denoted by Zi(’”l‘”), G. 2. W(mL) &g for the Rasler d o

Z(m+1)  (m+1) X(M*+1) is the proiection o™ int FIG. 2. W(m,L) versus lag for the Rssler data set. In these
2 r®iNg © Xi s e projection ov ° calculations 10 000 points were usaftl.is calculated fom=2, 3,

MM TheN, nearest neighbors O(i(mﬂ) are determined. and 4:1.=2,3,...,15. Number ofreference pointsN,¢= 300.
They are denoted by(i(’”f“),Xi("TZ’J’l),...,Xi(T\,:l). (d) The  Number of nearest neighboh,= 25.
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the Lorenz equationglx/dt=a(y—x), dy/dt=x(R—2), 1200
dz/dt=xy—bz, «=16.0,R=45.92,b=4, and §t=0.125.

The Liebertet al. procedure was applied to this time series 50l
and produced embedding parameters in agreement with thos
found using a procedure published by Wetfal. [30].

The most computationally demanding element of this pro- 80
cedure is the identification of thM, nearest neighbors of
eachX;. (Similarly, the search for the single nearest neigh-
bor N,=1 which is implemented in the method of global
false nearest neighbors, is the most computationally expen
sive element of that methgdThere is a large literature de- 400
scribing procedures that can be modified to produce method:
that will accelerate nearest neighbor searche®'th[span-
ning treeq 31], KD trees[32], K trees[33—34 (structures for
optimizing orthogonal range searchsn our recent calcu-
lations, we used our implementation of Schreiber’s linked- O % 4 & s 7 8 8 10 11 12
list search procedurg87]. e

200

FIG. 3. C(m,L) versus lag for the Rssler data set. In these
calculations 10 000 points were use&d= 10% of the standard de-
As previously described, the Gao-Zheng method is basedation of the data set.C is calculated form=2, 3, and 4;L
on the rate of separation of points that are initially close to=2,3,...,12. N=500 and|i—j|=>25.

each other. It is therefore closely related to the estimation of

the largest Lyapunov exponent. This relationship is devely,5o4 containing these points. Under these circumstances, the
o_ped_ epr|C|tIy_|n the next section. There are operational dif+jme evolution ofX; andX; could display very different dy-
ficulties associated with the Gao-Zheng method. They turiyamical behavior. This would typically result in a faster
on the choice of the evolution time paramdtewhich speci- separation of their trajectories.

fies the time over which the divergence of trajectories is o average, therefore, we expect the separation Tigne
observed. The evolution time before two nearby points besq taise nearest neighbors to be shorter than the average

come uncorrelated is a function of both the largest Lyapuno\enaration time for true nearest neighbors. An average sepa-
exponent and the initial separation of these points. Howeveliion time is calculated fan= 2 as a function of.. As mis
without some knowledge of the spatial extent of the System's,creased the frequency of false nearest neighbors is reduced

attractor, it is difficult to estimate whep the evolution time is and the average separation time increases. The embedding
too large. The method of characteristic length addresses thi§iensionm is increased until a further increase rimdoes

point by estimating the size of the attractor and using thig,qt have an impact on the average separation time.
length in an assessment of the separation time of trajectories 1,4 procedure can be operationalized by the following

that are glqse initially. For_ a given_scalar time series_, thesequence of calculations. For a givenL pair, C(m,L) is
chgracterlstlc lengtd(m,L) is a function ofmandL and is .5 culated in the following steps.
defined as (1) The characteristic length(m,L) is calculated by the

Im,L)=(|%; X)), averagel(m,L) =(|X;,X[), wherei,j are selected randomly.

J The number of pairs used to form the average is equal to

where (---) denotes the average Euclidean distance taked5% of the number of points in the embedding space.
over randomly selected pairs of points in the embedding (2) N,¢, the number of reference points used in the sepa-
space.JJ(m,L) provides an imperfect measure of the size ofration time calculations, is specified. In the calculations
the attractor. In our calculations, the number of pairs ofshown in Fig. 3, where 10,000 points are in the time series,
points used to calculat®&(m,L) was 15% of the number of N, is set equal to 500.
embedded points. It should be noted that in the case of (3) Avalue ofr is specified. The specification used in our
J(m,L) calculations, the choice dfandj is random and is implementation of the Gao-Zheng method is also used in the
not subject to the restrictions dtj pairs employed in the Fig. 3 calculations. Specifically,is set equal to 10% of the
calculation ofA (k,m,L). standard deviation of the original time series.

The argument for indirectly assessing the frequency of (4) The embedded poinX; is chosen at randon¥; is
false nearest neighbors with the method of characteristidefined as the value gfclosest toi that satisfies the condi-
length follows a development analogous to that used to cortions that|i —j| is greater than the signal’s autocorrelation
struct the Gao-Zheng criterion. Suppose tiatand X, time and|X;,X;|<r. If no value ofj satisfying these two
points that are initially close in phase space, are true nearesbnditions existsX; is discarded and another point is se-
neighbors. The time required for them to separate to somkected.
fraction of J(m,L) will depend on the Lyapunov exponent.  (5) T,(X;,X;) is determined. This is the minimum inte-
We denote this separation time &g. If, in contrast,X; and  gerk required forX; ., X/ to exceed 0.4m,L). If these
X; are false nearest neighbors, they are close to each othpoints do not separate to this distang,is discarded and
because the embedded set is folded onto itself in a neighboanother point is chosen.

C. Method of characteristic length
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(6) This process is repeated urili] values ofT ;(X; , X;)
have been obtaine@(m,L) is their average:

1
C(m,L)= N

> To(Xi,X)).

ref i,]

As shown in Fig. 3mis first set equal to 2 an@(m,L)
is calculated as a function &f The embedding dimension is
then increased and(m,L) is again calculated. The increase
in C(m,L) that was anticipated by the preceding argument is
observed. Further increasesrmdo not, however, result in
further increase€(m,L); therefore it is concluded than
=3 is an effective choice. The indicated value of lag corre-
sponds to the first maximum d&(m,L) whenm=3. This
results_ inL=8_. The proceqlure was also Qpplied to the Lo- 0 35 : 35 r 25 s 55 6
renz time series, and again results consistent with those ol Embedding Dimension
Wolf et al.[30] were obtained.

Percentage of False Nearest Neighbors

FIG. 4. Percentage of false nearest neighbors versus embedding
dimension for the Rssler data set. In these calculations 10 000

D. Global false nearest neighbors and the autocorrelation . .
points were usedn=2,3,...,6;L=9. The threshold is equal to

function 15
The three methods presented thus far determine the em- P
bedding dimension and lag simultaneously. In this section we R= - Temb
combine a method for choosing a proper embedding dimen- X=X

sion, the method of global false nearest neighbors, with a _ \ . : . am
separate method for determining the lag based on the auto- i iS deemed to be a false nearest neighboxah 2t
correlation function. This criterion for specifying lag sets it I R exceeds the constaf,. The choice ofR,, was dis-
equal to the value of delay corresponding to the first zero ofussed by AbarbangB8]. We follow his recommendation

the autocorrelation function. The autocorrelation functionN€ré and seRy=15. The use of global false nearest neigh-
C(Kk) for a time series, i=1,2, ... N is given by bors to determine the embedding dimension is implemented
by the following procedure.

(1) L is set equal to the first zero of the autocorrelation.

N—k
21 (X +k—X)(Xj—X)

1 N (2) Ry is set equal to a fixed value.
C(K)= ' - where X= —2 X; . (3) The percentage_ of false neargst neighbors is calculated
5 Ni=1 as a function ofm using the following procedurga) For
21 (X =X) every pointX; e R™, the nearest neighbot" is determined.

(b) The corresponding value dR is calculated.(c) If R
The determination of the embedding dimension using & Ry, thenXiNN is deemed to be a false nearest neighbor of
global false nearest neighbors argument begins with an enk; .
bedding inR™ which uses the lag established using the au- (4) The value ofmis increased until false nearest neigh-
tocorrelation function. LeX; denote an element in this em- bors are no longer observed or until the frequency of false
bedding, and leX"™=(x{" X' ... x\n_1).) denote its  nearest neighbors is below an acceptable value.
nearest neighbor. The Euclidean distance between these two Figure 4 shows the results obtained with thes8ler data.
points inR™ is denoted by X; —XN|,: The value of the lag determined from the autocorrelation
function was 9. Using this value of the lag, the procedure
m-1 identifiedm=4 as the optimal embedding dimension.

NNj2 _ NN 2
X=X = kZO (Xi kL= Xik)
E. Global false nearest neighbors and mutual information

The Euclidean distance between the projection of these tWo This procedure differs from the immediately preceding

points intoS™** is given by method in the criterion used to determine the lag. The same
procedure, global false nearest neighbors, is used to deter-
mine the embedding dimension. Choosing thellag be the

first zero crossing o€C(k) means that, on average, the ob-
servationsx; andx; | will be linearly independent. This is
the optimal linear choice, from the point of view of predict-

X=X 2= X = XN R (= X0 ) 2.

Abarbanel 38] definesR, a measure of the distance between
X; and XM in /™1 normalized against their distance in

m
" as ability in a least squares sensexpf | from a knowledge of
X, — XNN[2_ X, — XNN|2 112 X . Althou.gh historically it has been widely l_Jseq to deter-
o 7 Imd NN 2' Lm mine the time delay, some authors now question its use when
X=X the underlying process is nonlind®8]. Abarbane[38] and
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10.3 . . . . . T . r information is defined as the average over all measurements
of this statistic between sefsandB [38]:

10.2 j
10-1 Pas(a;,bj)
lpg= Pas(a;,b)log| =———=——|.
10 AB a%j as(@;.by)log; Pa(a;)Pg(b;)
9.9 . o . . . .
The specific application to a time series follows immediately
£ 98 from this definition. As before, let;, i=1,2,... N, denote
0.7 an observed time series. Define the Aet{a;} as the value
of x at timei, X;, and the seB as the value ok at timei
o6 +7, X;+,. The mutual information becomes a function of
9.5 the time shift variabler,
9.4 1
P(Xi Xi+7)
; . . I(7)= P(X; ,Xi;+ )00y =———|.
S 6 % 1o 15 94 G615 20 (7) xi,zx:'ﬂ (XX 7)10g P(xi)P(Xi+ )

This measure tells us the average amount of information
learned abouk;,, by measuringx;. Figure 5 shows the
results using the Rssler equations. We conclude that

others(notably Frasef10]) have therefore argued that the =12 is the indicated choice.

first minimum of the average mutual information function is

a more appropriate choice of the lag, because mutual infor- V. CALCULATING THE LARGEST LYAPUNOV

mation can be regarded as a nonlinear analog of the autocor- EXPONENT FROM A TIME SERIES

relation function. The general case of the definition of mutual  Aq utlined in the Introduction, these five methods for

information begins with two set&={a;; andB={b;}. The  yetermining embedding parameters were applied to the three
mutual information is the amount learned by the measuregeg; cases. The results are displayed in Table I. In that table,
ment ofa; about the value ob; . In bits, it is given by GFNN-A identifies the embedding parameters determined by
Pas(a by the autocorrelation function combined with the method of

&} global false nearest neighbors and GFNN-MI identifies the
Pa(ai)Pg(bj) results obtained when the lag was determined by calculating
the mutual information.

whereP,g is the joint probability distribution, ané®, and The comparative success of these embedding parameters
Pg are the individual probability distributions. We note that was assessed by using them in calculations of the largest
if a measurement dd; is completely independent bf , then  Lyapunov exponent. For the purposes of this test, the embed-
the amount of information gained abdytby measuring; , ding criterion that produces an embedding which in turn pro-
which is the mutual information, is zero. The average mutuatluces a value for the largest Lyapunov exponent that is clos-

FIG. 5. Mutual information versus lag for the Bsler data set.
In these calculations 10 000 points were used.

log,

TABLE |. Embedding parameters and Lyapunov exponents calculated by different methods.

Mackey-Glass Mackey-Glass
Method Rasler =17 7=150
Embedding parameters
m,L m,L m,L
Gao-Zheng 3,8 3,14 6,26
Schuster 3,9 3,10 3,32
Characteristic length 3,8 4,10 5,17
GFNN-A 49 4,18 6,82
GFNN-MI 4,12 4,23 6,82
Lyapunov exponents
Benettin 0.129 0.0071 0.0023
Gao-Zheng 0.128 0.0106 0.0014
Schuster 0.135 0.0092 0.0011
Characteristic length 0.128 0.0073 0.0015
GFNN-A 0.124 0.0089 0.0020
GFNN-MI 0.125 0.0085 0.0020
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5 - y . y obtained when this procedure for estimatingias applied to
the test systems are given in Table I.

Table | shows the embedding parameters and Lyapunov
exponents generated by each method. Calculations using the
Rossler time series produced similar embedding parameters,
and in all cases the Lyapunov exponents were close to the
Benettin reference value. In the trials using the Mackey-
Glass system withr=17, some differences in embedding
parameters and performance were observed. The characteris-
tic length, GFNN-A, and GFNN-MI methods give a some-
what better performance. It is only in the group of calcula-
tions that examine the Mackey-Glass system with 150
that we begin to see a notable difference in performance. In

. . . . this case, only the GFNN-A and GFNN-MI methods resulted
0 50 100 tion Time" 200 260 in an estimated exponent that was close to the reference
value. While one might argue that the characteristic length

FIG. 6. A versus evolution timé for the Rasler data set. In  was better for the kssler system and the=17 Mackey-
these calculations 10 000 points were embedded using the embed;jgss system, only the two global false nearest neighbor

ding parametersm=3 and L=8. Neighborhood sizer  methods performed reasonably well in all three trials.
=1%,2%,...,6% of the timeseries’ standard deviation.N,

=500. The top line corresponds te=1%, and the bottom corre-
sponds tar =6%. |i —j|=40.

V. EXPERIMENTAL DATA AND SENSITIVITY TO NOISE

est to the Benettiet al. reference value is deemed to be the 5 long and melancholy history demonstrates that proce-
lmqst successful. Of the ma:cny candidate methods fgr CaIChLHures that are successful in the examination of computation-
ating Lyapunov exponents from a time series, we chose thgy senerated noise-free data can fail when applied to noisy

procedure published. by Gao and _Zheh_]ﬂ], which is_ time series. This concern motivated the next phase of the
closely related to their procedure for identifying appropriate.

embedding parameters. The largest Lyapunov exponena ![r;\r/;s;[ggigti)snelir;\;\:]k:/lgzﬂth:tergbustness of the embedding cri-
guantitative characterization of the rate at which two initially The th del gt ' din th lier i taati
close points diverge in phase space under the assumption that.. € three model systems used in the earlier investigation
this separation is exponential, ossler, Mackey—GIa;sz 17, gnd Magkey-GIass= 150)
were used. Two experimental time series were also added to
|xi+k,)<j+k|:|xi ,Xj|e”‘”, the test collection. The first is an electroencephalographic
time series recorded during a clinically induced generalized
where ét is the sampling interval. As in the case of estimat-seizure. Details of the recording protocol are given by Cel-
ing embedding parameters with the Gao-Zheng method, thigicci et al. [39]. The second experimental time series is a
choice ofX;,X; pairs cannot be arbitrary. First, the points resting, eyes-closed electroencephalogrd@®&G) recorded
must be close initially. Therefore, as before, we requirefrom a healthy control subject. Watanale¢ al. [40] de-
|Xi,Xj|<r wherer is expressed in terms of the standardscribed the recording procedure. The incorporation of experi-
deviation of the original time series. Second, the points musinental data into the study raises a procedural dilemma. In
have a minimum initial temporal separation; that is, we rethe case of the computational systems, the Beneitial.
quire [i — j[=KseparaionWhereKseparaionls €xpressed in terms 24,25 procedure could be used to obtain high quality refer-
of the autocorrelation function. If these conditions are metence values for the Lyapunov exponents. In the case of the
and if the separation oX; and X; is exponential, then the experimental data, this is not an option. We must therefore
average value of XX, /|X X} when plotted as a identify an alternative procedure for assessing an embedding
function of time will be linear and have the slope An  criterion’s robustness to noise. We operationally define a cri-
example using the Rsler time series is shown in Fig. 6. The terion as robust if the computational addition of noise to the

function original time series has a minimal impact on the cumulative
distribution of interpoint distances in the embedding space.

LE [ Xisk X4 This is implemented in the following five-step procedure.
Nret 17 IX; ,XJ-| (1) Let Sdenote the original time series. The embedding

criterion is applied t& to produce embedding parametens
is plotted as a function of time for six values of(1%, andL.
2%, ...,6% of thestandard deviation of the time series (2) The time serieSis embedded using these parameters
This function exhibits a linear region with a slope that isand the cumulative distribution of interpoint distances in the
independent of, followed by a region where the slope tends embedding space is calculated as a function of scale variable
to zero. The slope is approximately 0.07, which is in agreer. If there areN data points inS, then there ar& =N—(m
ment with previously published estimatg30]. The results —1)L points in the embedding space. Lt denote the
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TABLE Il. Kolmogorov-SmirnovP, -

Characteristic
Gao-Zheng Schuster length GFNN-A GFNN-MI
Rossler
10 dB 0.914 0.999 0.999 0.999 0.999
5dB 0.513 0.989 0.999 0.999 0.999
0dB 0.002 0.014 0.179 0.084 0.152
Mackey-Glassy=17
10 dB 0.999 0.295 0.927 0.999 0.999
5 dB 0.999 0.999 0.999 0.999 0.999
0dB 0.124 0.401 no result 0.013 0.013
Mackey-Glassy= 150
10 dB 0.999 0.362 0.999 0.999 0.999
5dB 0.999 0.999 0.999 0.999 0.942
0 dB no result 0.999 no result 0.213 0.055
EEG seizure
10 dB no result 0.999 0.999 0.999 0.999
5dB no result 0.999 no result 0.845 0.999
0dB no result 0.484 no result 0.065 0.972
EEG rest
10 dB 0.999 0.999 0.999 0.999 0.999
5dB 0.999 0.557 0.999 0.998 0.999
0dB 0.596 0.999 0.999 0.186 0.999
number of distinct pairs of points. The cumulative distribu- N;N,
tion Cg(r) is given by NE—N1+N2,
1 2 EK: XX whereN; andN, are the number of points in tf@and S*
N N_ R O —[X; J|) embedding spaces. Sin& is constructed by adding noise

to S N; andN, are equal.
where® is the Heaviside function. Operationally, an embedding criterion is deemed to be
(3) Gaussian distributed noise is added to the time seriegobust to noise if noise has a minimal impact on the cumu-
S The amplitude of noise is determined by a previouslylative distribution of interpoint distances in the embedding
specified signal to noise ratio. The resulting time series ispace. This is indicated by a high valueRy,,. The results
denotedS*. The same embedding criterion is appliedo  are presented in Table II. A value of “no result” is entered in

to produce embedding parameten$ andL*. this table if the embedding criterion in question failed to
(4) Usingm* andL*, the cumulative distribution of*,  converge on values ai and L. Three noise levels corre-
Csx (1), is computed. sponding to signal-to-noise ratios of 10, 5, and 0 dB were
(5) The two cumulative distributions are compared usingcomputed.
the Kolmogorov-Smirnov statisti@1,42. The Kolmogorov- Once again there is little criterion-dependent difference in
SmirnovD is the maximum value of the absolute difference the results obtained with the Bsler data. All of the methods
between two cumulative distributions: with the exception of the Gao-Zheng method are robust to a
signal-to-noise rati¢SNR) of 5 dB (that is, a noise variance
D= max |Cg(r)—Cg(r)|. that is approximately 32% of the signal variapnc€hey all
R <X<0 fail uniformly at 0 dB, where the noise variance and the

_ signal variance are equal. In the trials using the Mackey-
The null hypothesis holds that the two data sets are drawg|ass equation, we see a somewhat larger difference in per-
from the same parent distribution. The probability of the nullfgrmance among the methods. The Gao-Zheng, characteristic

hypothesis is given by length, GFNN-A, and GFNN-MI methods all perform well
down to a SNR of 5 dB. Strangely, Schuster’s method per-
0.11 formed better at the lower SNR of O dB than it did at 10 dB.
Prun= QKS[ VNe+0.12+ \/TE D] Repeated trials produced similar results, and we can offer no

reasonable explanation for this particular outcome.
In the trials using experimental data, we note even larger
QKS()\):ZE (_1)1—1e—212>\2, Qifferences in performance among the five methods. In addi-
=1 tion to GFNN-MI outperforming the other four methods, we
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also note the failure of the Gao-Zheng and characteristithese results provide generally useful guidelines, this gener-
length methods to specify embedding parameters for thesalization has not been demonstrated mathematically.

trials. Specifically, in the trials using seizure data, the char-

acteristic length method failed for SNR'’s of 5 dB and lower. ACKNOWLEDGMENTS

Additionally, the Gao-Zheng method failed for the original .

as well as the noise corrupted data sets for the case of the We would like to acknowledge support from the U.S. De-
seizure data. These time series are apparently too noiselike Bgrtment of Education Award No. H235J000001 to the Kras-

Medicine to the Naval Medical Research Center. We are
grateful to Tanya Schmah, Mathematical Institute, Warwick
VI. CONCLUSIONS University for her assistance, especially in the discussions of

Wi lude that in th trials the alobal fal he underlying mathematics and her essential observations
Jyve conclude that in these trials the global falSe neares oncerning the circularity of the embedding criterion litera-
neighbors method outperformed the other three procedur re

for determining the embedding dimension. Additionally, '
when used in combination with GFNN, the first minimum of
the mutual information function gave a more successful
value of the lag than the first zero of the autocorrelation | et the set{x;,x,X3,...}, x; € R, [1] denote the sequen-

function. However, before generalizing these results inapprotial measurements of an observed signal. They can be voltage
prlately, other factors should be considered. One must ask, alues recorded from an EEG or a sequence of heart inter-

a given method consistent in its interpretation? That is, coulgheat intervals. These values are used to create a set of em-
different researchers interpret the results in the same way? kjedded point§X;} e A", where

this regard, GFNN-A has advantages over the other methods.
A disadvantage that those procedures share is the need to Xi= (X} Xj+1: X425+ Xj+m-1)
estimate where a maximum or minimum of some function
has occurred. While in principle this is simple, time series(the case of a nonunitary value of the lag will be considered
that are very complex or noise corrupted can make this &resently. The parametem is the embedding dimension.
difficult task. One sometimes has to choose between whakhe criterion for selectingn and generalizations of the em-
could be a sharp but specious minimum caused by noise arlRgdding procedure will be discussed presently. The time-
what appears to be a more general trend. These complicsependent behavior ofX;} is the trajectory in an
tions of interpretation can lead to conflicting results. This is an-dimensional space specified by — X;—Xz—---. The
problem that we have considered in our earlier work on esanalysis of the original time serigs;} proceeds as an ex-
timating lag using the minimum of mutual informatip43]. ~ amination of the geometry of therdimensional se{X;}.
In that contribution, we suggested that the minimum mightThis is motivated by the Takens-Marmbedding theorem
be estimated by first filtering the mutual information func-[1,2], which shows that the dynamical properties of the sys-
tion. tem that generated the observed signal are reflect¢d;in

Another disadvantage of the methods of Gao and Zhengd simplified statement of the theorem follows.
Schuster, and characteristic length is that, in addition to lo- It is assumed that the observed signal is generated by a
cating an extremum, one needs to decide if a significandlynamical system composed of real variables. For com-
change has occurred as the embedding dimension is iflex systemsw will be very large, and not al variables
creased. Potential difficulties in this regard can be seen in theill be directly observable. As a function of time the dy-
diagrams of Sec. Ill. As originally published, these methodghamical system moves on a compact behavior spashich
require subjective assessments that could cause differeita subset oR”. The compactnegbounded and closgaf
conclusions to be drawn from the same calculations. Globahe behavior space is an assumption. However, we could
false nearest neighbors has an advantage over these meth&@yer contradict it with real dat® is also called the state
because the indicated choice of embedding dimension is thgpace or the phase space. In abstract terms the dynamical
minimum dimension for which the number of false nearestsystem is a continuous map acting on the behavior space,
neighbors is zero or consistently below some explicityV:P— P. For any given initial poiny, y e PCR®, the state
specifiable threshold. There is no uncertainty in the interpreof the system at time is given by ¥'(y). The object of
tation of the results. Also, if an efficiemt logN procedure is ~ signal analysis is to infer properties #f from {x;}, in this
used to locate nearest neighbors, the method of global falsgase by an examination ¢K;}.
nearest neighbors is significantly faster than the others. Lety; e P denote the position of the true system at itthe

We conclude by reiterating a limitation of this investiga- sample time. The valug; € %" is the value of the observed
tion that was made in the Introduction. These comparativecalar variable at that time. It is assumed thais related to
computations have identified global false nearest neighborg; by a smooth mag, c:P—M1, such thatc(y;) =x; for all
combined with the first minimum of the mutual information j. Additionally, it is assumed that the setyfs correspond-
function as the best procedure for identifying embedding paing to the observex;’s forms a dense subset & @ is
rameters for these data. Strictly, these results are valid onlgefined as follows. For any integen, m>2w, define
for these data and these specific tests. While it is hoped thab:PC R“—R™ by

APPENDIX: EMBEDDING OBSERVED DATA
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®(y)=(c(y),c(¥(y))),c(¥?(C)),....c(T™(y)).
SinceW¥ (y;) =y;+1 andc(y;) =X;
DY) = (X Xj+1:Xj 2, Xj4m-1)-

Theorem(1) For almost any andc, ® is an embedding.
That is, P is diffeomorphic to its image undeb. (2) The
continuous extension max,— X;,, corresponds, under the
diffeomorphism, to the original ma@. Therefore, the ob-
served trajector);— X is intimately related to the true,
high dimensional systenlr. Specifically, the relationship is a
diffeomorphism (a differentiable function with a differen-
tiable inversg Properties oX;— X;, ; as established by ob-
served data will, up to a diffeomorphism, also be truelof

Thus if the conditions of the theorem are met, we can make

meaningful inferences abotlt from {X;}.

This is a remarkable result. It states, subject to the cond

PHYSICAL REVIEW E67, 066210 (2003

mate behavior space and thus better approximate the density
requirement of the theorem:

X = (X X)L X420 0- - Xj 4+ (m-1)L)-

This can be addressed in the preceding analysis by incorpo-
rating a dependence dninto the definition ofV.

Limitations imposed by the finite size ¢k;} can be ad-
dressed in part by observing more than one dynamical vari-
able. The embedding procedure can be generalized to incor-
porate multichannel dafd]. Suppose data are recorded from
K observed variables. Le{k}} denote the time series of the
ith channel:

X} = (X)X X,...).

iThe easiest procedure is to construct the embedded 3%t in

tions of the theorem, that we can perform an analysis of an

w-dimensional dynamical system based on observations of a
single variable. However, in the real world the conditions of

the theorem are never met. The crucial assumption is that t
set ofy;’s corresponding to the observegs forms a dense
subset of behavior spa¢® This is clearly impossible given
a finite data sefx;}. Nonetheless, as an approximatiof),

— X1 can provide valuable insights intd. Since{x;} is

2 XK)

ol
Xi= (X}, X7, X

"eor example, if three variables, x, andy are recorded,X;}

can be formed ifRz by

Xi=(Wj,Xj,Yj)-

finite, a number of practical issues arise. Recall the definitioRrp;g procedure can fail iK, the number of observed vari-

of X:
XJ:(X] an+1,Xj+2a---1Xj+m71)-

A revision of this definition that incorporates a lag L

el™, can help space the observed data through the approxi- Xj=

ables, is less than the effective dimension of the generating
dynamical system. In that case, the procedure for embedding
scalar data to an arbitrary dimension can be generalized:

1,2 K 1 2 K
O X s X X 1 X e X g e
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