9,162 research outputs found

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    Indexación: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd

    Chaotic Waveguide-Based Resonators for Microlasers

    Full text link
    We propose the construction of highly directional emission microlasers using two-dimensional high-index semiconductor waveguides as {\it open} resonators. The prototype waveguide is formed by two collinear leads connected to a cavity of certain shape. The proposed lasing mechanism requires that the shape of the cavity yield mixed chaotic ray dynamics so as to have the appropiate (phase space) resonance islands. These islands allow, via Heisenberg's uncertainty principle, the appearance of quasi bound states (QBS) which, in turn, propitiate the lasing mechanism. The energy values of the QBS are found through the solution of the Helmholtz equation. We use classical ray dynamics to predict the direction and intensity of the lasing produced by such open resonators for typical values of the index of refraction.Comment: 5 pages, 5 figure

    Riddled-like Basin in Two-Dimensional Map for Bouncing Motion of an Inelastic Particle on a Vibrating Board

    Full text link
    Motivated by bouncing motion of an inelastic particle on a vibrating board, a simple two-dimensional map is constructed and its behavior is studied numerically. In addition to the typical route to chaos through a periodic doubling bifurcation, we found peculiar behavior in the parameter region where two stable periodic attractors coexist. A typical orbit in the region goes through chaotic motion for an extended transient period before it converges into one of the two periodic attractors. The basin structure in this parameter region is almost riddling and the fractal dimension of the basin boundary is close to two, {\it i.e.}, the dimension of the phase space.Comment: 4 pages, 5 figures. to be published in J. Phys. Soc. Jpn. (2002

    Making On-Demand Routing Efficient with Route-Request Aggregation

    Full text link
    In theory, on-demand routing is very attractive for mobile ad hoc networks (MANET), because it induces signaling only for those destinations for which there is data traffic. However, in practice, the signaling overhead of existing on-demand routing protocols becomes excessive as the rate of topology changes increases due to mobility or other causes. We introduce the first on-demand routing approach that eliminates the main limitation of on-demand routing by aggregating route requests (RREQ) for the same destinations. The approach can be applied to any existing on-demand routing protocol, and we introduce the Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how RREQ aggregation can be used. ADARA is compared to AODV and OLSR using discrete-event simulations, and the results show that aggregating RREQs can make on-demand routing more efficient than existing proactive or on-demand routing protocols

    A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates

    Get PDF
    The availability of engineered biological tissues holds great potential for both clinical applications and basic research in a life science laboratory. A prototype standalone perfusion/compression bioreactor system was proposed to address the osteogenic commitment of stem cells seeded onboard of 3D chitosan-graphene (CHT/G) templates. Testing involved the coordinated administration of a 1 mL/min medium flow rate together with dynamic compression (1% strain at 1 Hz; applied twice daily for 30 min) for one week. When compared to traditional static culture conditions, the application of perfusion and compression stimuli to human bone marrow stem cells using the 3D CHT/G template scaffold induced a sizable effect. After using the dynamic culture protocol, there was evidence of a larger number of viable cells within the inner core of the scaffold and of enhanced extracellular matrix mineralization. These observations show that our novel device would be suitable for addressing and investigating the osteogenic phenotype commitment of stem cells, for both potential clinical applications and basic research

    The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense

    Get PDF
    External and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA). However, the immediate signaling components after BABA perception by IBI1, as well as the regulatory role of ABA therein, remain unknown. Here, we have studied the early signaling events controlling IBI1-dependent BABA-induced resistance (BABA-IR), using untargeted transcriptome and protein interaction analyses. Transcriptome analysis revealed that IBI1-dependent expression of BABA-IR against the biotrophic oomycete Hyaloperonospora arabidopsidis is associated with suppression of ABA-inducible abiotic stress genes. Protein interaction studies identified the VOZ1 and VOZ2 transcription factors (TFs) as IBI1-interacting partners, which are transcriptionally induced by ABA but suppress pathogen-induced expression of ABA-dependent genes. Furthermore, we show that VOZ TFs require nuclear localization for their contribution to BABA-IR by mediating augmented expression of callose-associated defense. Collectively, our study indicates that the IBI1-VOZ signaling module channels pathogen-induced ABA signaling toward cell wall defense while simultaneously suppressing abiotic stress-responsive genes
    • …
    corecore