7,630 research outputs found

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    New constraints on data-closeness and needle map consistency for shape-from-shading

    Get PDF
    This paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint. The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and gradient consistency constraints improve the fidelity of the recovered needle-map

    Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests

    Get PDF
    Basic pressure data are presented which was obtained from an experimental study of upper-surface blown configurations at cruise. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high-pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design

    Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests

    Get PDF
    The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers

    Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    Get PDF
    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design

    Exploratory studies of the cruise performance of upper surface blown configurations

    Get PDF
    The data and major conclusions obtained from an experimental/analytical study of upper-surface blown (USB) configurations at cruise are summarized. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design

    Soliton response to transient trap variations

    Full text link
    The response of bright and dark solitons to rapid variations in an expulsive longitudinal trap is investigated. We concentrate on the effect of transient changes in the trap frequency in the form of temporal delta kicks and the hyperbolic cotangent functions. Exact expressions are obtained for the soliton profiles. This is accomplished using the fact that a suitable linear Schrodinger stationary state solution in time can be effectively combined with the solutions of non-linear Schrodinger equation, for obtaining solutions of the Gross-Pitaevskii equation with time dependent scattering length in a harmonic trap. Interestingly, there is rapid pulse amplification in certain scenarios

    Boson-Fermion coherence in a spherically symmetric harmonic trap

    Full text link
    We consider the photoassociation of a low-density gas of quantum-degenerate trapped fermionic atoms into bosonic molecules in a spherically symmetric harmonic potential. For a dilute system and the photoassociation coupling energy small compared to the level separation of the trap, only those fermions in the single shell with Fermi energy are coupled to the bosonic molecular field. Introducing a collective pseudo-spin operator formalism we show that this system can then be mapped onto the Tavis-Cummings Hamiltonian of quantum optics, with an additional pairing interaction. By exact diagonalization of the Hamiltonian, we examine the ground state and low excitations of the Bose-Fermi system, and study the dynamics of the coherent coupling between atoms and molecules. In a semiclassical description of the system, the pairing interaction between fermions is shown to result in a self-trapping transition in the photoassociation, with a sudden suppression of the coherent oscillations between atoms and molecules. We also show that the full quantum dynamics of the system is dominated by quantum fluctuations in the vicinity of the self-trapping solution.Comment: 16 pages, 14 figure

    Control theory helps to resolve the measles paradox

    Get PDF
    Measles virus (MV) is a highly contagious respiratory morbillivirus that results in many disabilities and deaths. A crucial challenge in studying MV infection is to understand the so-called ‘measles paradox’—the progression of the infection to severe immunosuppression before clearance of acute viremia, which is also observed in canine distemper virus (CDV) infection. However, a lack of models that match in vivo data has restricted our understanding of this complex and counter-intuitive phenomenon. Recently, progress was made in the development of a model that fits data from acute measles infection in rhesus macaques. This progress motivates our investigations to gain additional insights from this model into the control mechanisms underlying the paradox. In this paper, we investigated analytical conditions determining the control and robustness of viral clearance for MV and CDV, to untangle complex feedback mechanisms underlying the dynamics of acute infections in their natural hosts. We applied control theory to this model to help resolve the measles paradox. We showed that immunosuppression is important to control and clear the virus. We also showed under which conditions T-cell killing becomes the primary mechanism for immunosuppression and viral clearance. Furthermore, we characterized robustness properties of T-cell immunity to explain similarities and differences in the control of MV and CDV. Together, our results are consistent with experimental data, advance understanding of control mechanisms of viral clearance across morbilliviruses, and will help inform the development of effective treatments. Further the analysis methods and results have the potential to advance understanding of immune system responses to a range of viral infections such as COVID-19
    • …
    corecore