398 research outputs found

    Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria

    No full text
    International audienceA soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used in order to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997), at an eight km resolution. It was based on the data available at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria. Atmospheric parameters were carefully checked and interpolated with a high level of detail in space and time (3-h step). Comparing computed Penman evapotranspiration versus observed pan evaporation validated the quality of the implemented forcing. The impact of the human activities on the rivers (especially hydropower or irrigation) was taken into account. Some improvements of the hydrometeorological model were made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 rivergages were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the rivergages. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important on this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitations, soil properties and vegetation variability. An inter annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. Energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecast the water budget and the riverflow of Bulgaria

    Evolution of Neutron-Star, Carbon-Oxygen White-Dwarf Binaries

    Get PDF
    At least one, but more likely two or more, eccentric neutron-star, carbon-oxygen white-dwarf binaries with an unrecycled pulsar have been observed. According to the standard scenario for evolving neutron stars which are recycled in common envelope evolution we expect to observe \gsim 50 such circular neutron star-carbon oxygen white dwarf binaries, since their formation rate is roughly equal to that of the eccentric binaries and the time over which they can be observed is two orders of magnitude longer, as we shall outline. We observe at most one or two such circular binaries and from that we conclude that the standard scenario must be revised. Introducing hypercritical accretion into common envelope evolution removes the discrepancy by converting the neutron star into a black hole which does not emit radio waves, and therefore would not be observed.Comment: 25 pages, 1 figure, accepted in Ap

    Predictability of soil moisture and river flows over France for the spring season

    Get PDF
    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960–2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the MĂ©tĂ©o-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened

    The Role of Helium Stars in the Formation of Double Neutron Stars

    Get PDF
    We have calculated the evolution of 60 model binary systems consisting of helium stars in the mass range of M_He= 2.5-6Msun with a 1.4Msun neutron star companion to investigate the formation of double neutron star systems.Orbital periods ranging from 0.09 to 2 days are considered, corresponding to Roche lobe overflow starting from the helium main sequence to after the ignition of carbon burning in the core. We have also examined the evolution into a common envelope phase via secular instability, delayed dynamical instability, and the consequence of matter filling the neutron star's Roche lobe. The survival of some close He-star neutron-star binaries through the last mass transfer episode (either dynamically stable or unstable mass transfer phase) leads to the formation of extremely short-period double neutron star systems (with P<~0.1days). In addition, we find that systems throughout the entire calculated mass range can evolve into a common envelope phase, depending on the orbital period at the onset of mass transfer. The critical orbital period below which common envelope evolution occurs generally increases with M_He. In addition, a common envelope phase may occur during a short time for systems characterized by orbital periods of 0.1-0.5 days at low He-star masses (~ 2.6-3.3Msun). The existence of a short-period population of double neutron stars increases the predicted detection rate of inspiral events by ground-based gravitational-wave detectors and impacts their merger location in host galaxies and their possible role as gamma-ray burst progenitors. We use a set of population synthesis calculations and investigate the implications of the mass-transfer results for the orbital properties of DNS populations.Comment: 30 pages, Latex (AASTeX), 1 table, 8 figures. To appear in ApJ, v592 n1 July 20, 200

    Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Get PDF
    Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc.) on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM) hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI) at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI) – and multiscale hydrological droughts, through the Standardized Flow Index (SFI). Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow). Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990) to short hot and dry periods (2003). Results show that the ranking of drought events depends highly on both the time scale and the variable considered. This multilevel and multiscale drought climatology will serve as a basis for assessing the impacts of climate change on droughts in France

    The Galactic Population of Low- and Intermediate-Mass X-ray Binaries

    Full text link
    (abridged) We present the first study that combines binary population synthesis in the Galactic disk and detailed evolutionary calculations of low- and intermediate-mass X-ray binaries (L/IMXBs). We show that the formation probability of IMXBs with initial donor masses of 1.5--4 Msun is typically >~5 times higher than that of standard LMXBs, and suggest that the majority of the observed systems may have descended from IMXBs. Distributions at the current epoch of the orbital periods, donor masses, and mass accretion rates have been computed, as have orbital-period distributions of BMPs. Several significant discrepancies between the theoretical and observed distributions are discussed. The orbital-period distribution of observed BMPs strongly favors cases where the envelope of the neutron-star progenitor is more easily ejected during the common-envelope phase. However, this leads to a >~100-fold overproduction of the theoretical number of luminous X-ray sources relative to the total observed number of LMXBs. X-ray irradiation of the donor star may result in a dramatic reduction in the X-ray active lifetime of L/IMXBs, thus possibly resolving the overproduction problem, as well as the long-standing BMP/LMXB birthrate problem.Comment: 12 pages, emulateapj, submitted to Ap

    Coronary artery assessment by multidetector computed tomography in patients with prosthetic heart valves

    Get PDF
    Objectives Patients with prosthetic heart valves may require assessment for coronary artery disease. We assessed whether valve artefacts hamper coronary artery assessment by multidetector CT. Methods ECG-gated or -triggered CT angiograms were selected from our PACS archive based on the presence of prosthetic heart valves. The best systolic and diastolic axial reconstructions were selected for coronary assessment. Each present coronary segment was scored for the presence of valve-related artefacts prohibiting coronary artery assessment. Scoring was performed in consensus by two observers. Results Eighty-two CT angiograms were performed on a 64-slice ( = 27) or 256-slice ( = 55) multidetector CT. Eighty-nine valves and five annuloplasty rings were present. Forty-three out of 1160 (3.7%) present coronary artery segments were non-diagnostic due to valve artefacts (14/82 patients). Valve artefacts were located in right coronary artery (15/43; 35%), left anterior descending artery (2/43; 5%), circumflex artery (14/43; 32%) and marginal obtuse (12/43; 28%) segments. All cobalt-chrome containing valves caused artefacts prohibiting coronary assessment. Biological and titanium-containing valves did not cause artefacts except for three specific valve types. Conclusions Most commonly implanted prosthetic heart valves do not hamper coronary assessment on multidetector CT. Cobalt-chrome containing prosthetic heart valves preclude complete coronary artery assessment because of severe valve artefacts. Key Points Most commonly implanted prosthetic heart valves do not hamper coronary artery assessment Prosthetic heart valve composition determines the occurrence of prosthetic heart valve-related artefacts Bjork-Shiley and Sorin tilting disc valves preclude diagnostic coronary artery segment assessmen

    Development of a BelRAI screening instrument for correctional facilities preparatory phase for testing

    Get PDF
    Commissioned by the Belgian federal government, a BelRAI screening tool for the detention context was developed. The aim of this screening instrument is to collect all information necessary for care providers inside prison to decide whether a penitentiary care trajectory is needed

    Prospective ECG triggering reduces prosthetic heart valve-induced artefacts compared with retrospective ECG gating on 256-slice CT

    Get PDF
    Item does not contain fulltextOBJECTIVES: Multidetector computed tomography (MDCT) has diagnostic value for the evaluation of prosthetic heart valve (PHV) dysfunction but it is hampered by artefacts. We hypothesised that image acquisition using prospective triggering instead of retrospective gating would reduce artefacts related to pulsating PHV. METHODS: In a pulsatile in vitro model, a mono- and bileaflet PHV were imaged using 256 MDCT at 60, 75 and 90 beats per minute (BPM) with either retrospective gating (120 kV, 600 mAs, pitch 0.2, CTDI(vol) 39.8 mGy) or prospective triggering (120 kV, 200 mAs, CTDI(vol) 13.3 mGy). Two thresholds (>175 and <-45HU), derived from the density of surrounding structures, were used for quantification of hyper- and hypodense artefacts. Image noise and artefacts were compared between protocols. RESULTS: Prospective triggering reduced hyperdense artefacts for both valves at every BPM (P = 0.001 all comparisons). Hypodense artefacts were reduced for the monoleaflet valve at 60 (P = 0.009), 75 (P = 0.016) and 90 BPM (P = 0.001), and for the bileaflet valves at 60 (P = 0.001), 90 (P = 0.001) but not at 75 BPM (P = 0.6). Prospective triggering reduced image noise at 60 (P = 0.001) and 75 (P < 0.03) but not at 90 BPM. CONCLUSIONS: Compared with retrospective gating, prospective triggering reduced most artefacts related to pulsating PHV in vitro. KEY POINTS: * Computed tomographic images are often degraded by prosthetic heart valve-induced artefacts * Prospective triggering reduces prosthetic heart valve-induced artefacts in vitro * Artefact reduction at 90 beats per minute occurs without image noise reduction * Prospective triggering may improve CT image quality of moving hyperdense structures.1 juni 201
    • 

    corecore