2,710 research outputs found

    Universal Leakage Elimination

    Full text link
    ``Leakage'' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating the large class of leakage errors, under some circumstances, we can create the conditions for a decoherence free evolution. In other cases we identify a combination decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions.Comment: 14 pages, no figures, new version has references updated/fixe

    Third-order superintegrable systems separable in parabolic coordinates

    Full text link
    In this paper, we investigate superintegrable systems which separate in parabolic coordinates and admit a third-order integral of motion. We give the corresponding determining equations and show that all such systems are multi-separable and so admit two second-order integrals. The third-order integral is their Lie or Poisson commutator. We discuss how this situation is different from the Cartesian and polar cases where new potentials were discovered which are not multi-separable and which are expressed in terms of Painlev\'e transcendents or elliptic functions

    Characterizing Planetary Orbits and the Trajectories of Light

    Get PDF
    Exact analytic expressions for planetary orbits and light trajectories in the Schwarzschild geometry are presented. A new parameter space is used to characterize all possible planetary orbits. Different regions in this parameter space can be associated with different characteristics of the orbits. The boundaries for these regions are clearly defined. Observational data can be directly associated with points in the regions. A possible extension of these considerations with an additional parameter for the case of Kerr geometry is briefly discussed.Comment: 49 pages total with 11 tables and 10 figure

    Exact Solutions of a (2+1)-Dimensional Nonlinear Klein-Gordon Equation

    Full text link
    The purpose of this paper is to present a class of particular solutions of a C(2,1) conformally invariant nonlinear Klein-Gordon equation by symmetry reduction. Using the subgroups of similitude group reduced ordinary differential equations of second order and their solutions by a singularity analysis are classified. In particular, it has been shown that whenever they have the Painlev\'e property, they can be transformed to standard forms by Moebius transformations of dependent variable and arbitrary smooth transformations of independent variable whose solutions, depending on the values of parameters, are expressible in terms of either elementary functions or Jacobi elliptic functions.Comment: 16 pages, no figures, revised versio

    Finite-level systems, Hermitian operators, isometries, and a novel parameterization of Stiefel and Grassmann manifolds

    Full text link
    In this paper we obtain a description of the Hermitian operators acting on the Hilbert space \C^n, description which gives a complete solution to the over parameterization problem. More precisely we provide an explicit parameterization of arbitrary nn-dimensional operators, operators that may be considered either as Hamiltonians, or density matrices for finite-level quantum systems. It is shown that the spectral multiplicities are encoded in a flag unitary matrix obtained as an ordered product of special unitary matrices, each one generated by a complex nkn-k-dimensional unit vector, k=0,1,...,n2k=0,1,...,n-2. As a byproduct, an alternative and simple parameterization of Stiefel and Grassmann manifolds is obtained.Comment: 21 page

    Topological structures of adiabatic phase for multi-level quantum systems

    Full text link
    The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) have a monopole structure, the curvature two-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures.Comment: 15 pages, no figures. Accepted by J.Phys.

    A Simple Complete Search for Logic Programming

    Get PDF
    Here, we present a family of complete interleaving depth-first search strategies for embedded, domain-specific logic languages. We derive our search family from a stream-based implementation of incomplete depth-first search. The DSL\u27s programs\u27 texts induce particular strategies guaranteed to be complete

    Driven Macroscopic Quantum Tunneling of Ultracold Atoms in Engineered Optical Lattices

    Full text link
    Coherent macroscopic tunneling of a Bose-Einstein condensate between two parts of an optical lattice separated by an energy barrier is theoretically investigated. We show that by a pulsewise change of the barrier height, it is possible to switch between tunneling regime and a self-trapped state of the condensate. This property of the system is explained by effectively reducing the dynamics to the nonlinear problem of a particle moving in a double square well potential. The analysis is made for both attractive and repulsive interatomic forces, and it highlights the experimental relevance of our findings

    Active Galactic Nuclei in Void Regions

    Full text link
    We present a comprehensive study of accretion activity in the most underdense environments in the universe, the voids, based on the SDSS DR2 data. Based on investigations of multiple void regions, we show that AGN's occurrence rate and properties differ from those in walls. AGN are more common in voids than in walls, but only among moderately luminous and massive galaxies (M_r < -20, log M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by moderately massive and luminous galaxies are accreting at equal or lower rates than their wall counterparts, show less obscuration than in walls, and similarly aged stellar populations. The very few void AGN in massive bright hosts accrete more strongly, are more obscured, and are associated with younger stellar emission than wall AGN. Thus, accretion strength is probably connected to the availability of fuel supply, and accretion and star-formation co-evolve and rely on the same source of fuel. Nearest neighbor statistics indicate that the weak accretion activity (LINER-like) is not influenced by the local environment. However, H IIs, Seyferts, and Transition objects prefer more grouped small scale structures, indicating that the rate at which galaxies interact with each other affects their activity. These trends support a potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that we show is apparent in many properties of actively line-emitting galaxies, in both voids and walls. The subtle differences between void and wall AGN might be explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11, 200

    Conductivity of interacting massless Dirac particles in graphene: Collisionless regime

    Get PDF
    We provide detailed calculation of the a.c. conductivity in the case of 1/r-Coulomb interacting massless Dirac particles in graphene in the collisionless limit when \omega >> T. The analysis of the electron self-energy, current vertex function and polarization function, which enter into the calculation of physical quantities including the a.c. conductivity, is carried out by checking the Ward-Takahashi identities associated with the electrical charge conservation and making sure that they are satisfied at each step. We adopt a variant of the dimensional regularization of Veltman and t'Hooft by taking the spatial dimension D=2-\epsilon, for \epsilon > 0. The procedure adopted here yields a result for the conductivity correction which, while explicitly preserving charge conservation laws, is nevertheless different from the results reported previously in literature.Comment: 32 pages, no figures, published versio
    corecore