13 research outputs found

    Kinematics and helicity evolution of a loop-like eruptive prominence

    Full text link
    We aim at investigating the morphology, kinematic and helicity evolution of a loop-like prominence during its eruption. We use multi-instrument observations from AIA/SDO, EUVI/STEREO and LASCO/SoHO. The kinematic, morphological, geometrical, and helicity evolution of a loop-like eruptive prominence are studied in the context of the magnetic flux rope model of solar prominences. The prominence eruption evolved as a height expanding twisted loop with both legs anchored in the chromosphere of a plage area. The eruption process consists of a prominence activation, acceleration, and a phase of constant velocity. The prominence body was composed of left-hand (counter-clockwise) twisted threads around the main prominence axis. The twist during the eruption was estimated at 6pi (3 turns). The prominence reached a maximum height of 526 Mm before contracting to its primary location and partially reformed in the same place two days after the eruption. This ejection, however, triggered a CME seen in LASCO C2. The prominence was located in the northern periphery of the CME magnetic field configuration and, therefore, the background magnetic field was asymmetric with respect to the filament position. The physical conditions of the falling plasma blobs were analysed with respect to the prominence kinematics. The same sign of the prominence body twist and writhe, as well as the amount of twisting above the critical value of 2pi after the activation phase indicate that possibly conditions for kink instability were present. No signature of magnetic reconnection was observed anywhere in the prominence body and its surroundings. The filament/prominence descent following the eruption and its partial reformation at the same place two days later suggest a confined type of eruption. The asymmetric background magnetic field possibly played an important role in the failed eruption.Comment: 9 pages, 8 figures, in press in A&

    H\alpha\ spectroscopy and multiwavelength imaging of a solar flare caused by filament eruption

    Full text link
    We study a sequence of eruptive events including filament eruption, a GOES C4.3 flare and a coronal mass ejection. We aim to identify the possible trigger(s) and precursor(s) of the filament destabilisation; investigate flare kernel characteristics; flare ribbons/kernels formation and evolution; study the interrelation of the filament-eruption/flare/coronal-mass-ejection phenomena as part of the integral active-region magnetic field configuration; determine H\alpha\ line profile evolution during the eruptive phenomena. Multi-instrument observations are analysed including H\alpha\ line profiles, speckle images at H\alpha-0.8 \AA\ and H\alpha+0.8 \AA\ from IBIS at DST/NSO, EUV images and magnetograms from the SDO, coronagraph images from STEREO and the X-ray flux observations from FERMI and GOES. We establish that the filament destabilisation and eruption are the main trigger for the flaring activity. A surge-like event with a circular ribbon in one of the filament footpoints is determined as the possible trigger of the filament destabilisation. Plasma draining in this footpoint is identified as the precursor for the filament eruption. A magnetic flux emergence prior to the filament destabilisation followed by a high rate of flux cancelation of 1.34×1016\times10^{16} Mx s1^{-1} is found during the flare activity. The flare X-ray lightcurves reveal three phases that are found to be associated with three different ribbons occurring consecutively. A kernel from each ribbon is selected and analysed. The kernel lightcurves and H alpha line profiles reveal that the emission increase in the line centre is stronger than that in the line wings. A delay of around 5-6 mins is found between the increase in the line centre and the occurrence of red asymmetry. Only red asymmetry is observed in the ribbons during the impulsive phases. Blue asymmetry is only associated with the dynamic filament.Comment: Accepted by A&A, 18 pages, 16 figure

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
    corecore