14 research outputs found

    Humanization and Characterization of an Anti-Human TNF-α Murine Monoclonal Antibody

    Get PDF
    A murine monoclonal antibody, m357, showing the highly neutralizing activities for human tumor necrosis factor (TNF-α) was chosen to be humanized by a variable domain resurfacing approach. The non-conserved surface residues in the framework regions of both the heavy and light chain variable regions were identified via a molecular modeling of m357 built by computer-assisted homology modeling. By replacing these critical surface residues with the human counterparts, a humanized version, h357, was generated. The humanized h357 IgG1 was then stably expressed in a mammalian cell line and the purified antibody maintained the high antigen binding affinity as compared with the parental m357 based on a soluble TNF-α neutralization bioassay. Furthermore, h357 IgG1 possesses the ability to mediate antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity upon binding to cells bearing the transmembrane form of TNF-α. In a mouse model of collagen antibody-induced arthritis, h357 IgG significantly inhibited disease progression by intra-peritoneal injection of 50 µg/mouse once-daily for 9 consecutive days. These results provided a basis for the development of h357 IgG as therapeutic use

    Design of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Crystallographic Surrogate Derived from Checkpoint Kinase 1 (CHK1)

    Get PDF
    Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinson’s disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity. The CHK1 10-point mutant was preferred, following assessment of surrogate binding affinity with LRRK2 inhibitors. Fragment hit-derived arylpyrrolo­[2,3-<i>b</i>]­pyridine LRRK2 inhibitors underwent structure-guided optimization using this crystallographic surrogate. LRRK2-pSer935 HEK293 IC<sub>50</sub> data for <b>22</b> were consistent with binding to Ala2016 in LRRK2 (equivalent to Ala147 in CHK1 10-point mutant structure). Compound <b>22</b> was shown to be potent, moderately selective, orally available, and brain-penetrant in wild-type mice, and confirmation of target engagement was demonstrated, with LRRK2-pSer935 IC<sub>50</sub> values for <b>22</b> in mouse brain and kidney being 1.3 and 5 nM, respectively

    Crystal structure of the M-fragment of a-catenin: implications for modulation of cell adhesion

    No full text
    The cytoskeletal protein α-catenin, which shares structural similarity with vinculin, is required for cadherin-mediated cell adhesion, and functions to modulate cell adhesive strength and to link the cadherins to the actin-based cytoskeleton. Here we describe the crystal structure of a region of α-catenin (residues 377–633) termed the M-fragment. The M-fragment is composed of a tandem repeat of two antiparallel four-helix bundles of virtually identical architectures that are related in structure to the dimerization domain of α-catenin and the tail region of vinculin. These results suggest that α-catenin is composed of repeating antiparallel helical domains. The region of α-catenin previously defined as an adhesion modulation domain corresponds to the C-terminal four-helix bundle of the M-fragment, and in the crystal lattice these domains exist as dimers. Evidence for dimerization of the M-fragment of α-catenin in solution was detected by chemical cross-linking experiments. The tendency of the adhesion modulation domain to form dimers may explain its biological activity of promoting cell–cell adhesiveness by inducing lateral dimerization of the associated cadherin molecule
    corecore