204 research outputs found

    Characterization of geological boundaries using 1‐D wavelet transform on gravity data: Theory and application to the Himalayas

    Get PDF
    International audienceWe investigate the use of the continuous wavelet transform for gravity inversion. The wavelet transform operator has recently been introduced in the domain of potential fields both as a filtering and a source-analysis tool. Here we develop an inverse scheme in the wavelet domain , designed to recover the geometric characteristics of density heterogeneities described by simple-shaped sources. The 1-D analyzing wavelet we use associates the upward continuation operator and linear combinations of derivatives of any order. In the gravity case, we first demonstrate how to localize causative sources using simple geometric constructions. Both the upper part of the source and the whole source can be studied when considering low or high altitudes, respectively. The ho-mogeneity degree of the source is deduced without prior information and allows us to infer its shape. Introducing complex wavelets, we derive analytically the scaling behavior of the wavelet coefficients for the dyke and the step sources. The modulus term is used in an inversion procedure to recover the thickness of the source. The phase term provides its dip. This analysis is performed on gravity data we measured along a profile across the Himalayas in Nepal. Good agreement of our results with well-documented thrusting structures demonstrates the applicability of the method to real data. Also, deeper, less constrained structures are characterized

    Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake

    Get PDF
    International audience[1] Mantle rheology is one of the essential, yet least understood, material properties of our planet, controlling the dynamic processes inside the Earth's mantle and the Earth's response to various forces. With the advent of GRACE satellite gravity, measurements of mass displacements associated with many processes are now available. In the case of mass displacements related to postseismic deformation, these data may provide new constraints on the mantle rheology. We consider the postseismic deformation due to the M w = 9.2 Sumatra 26 December 2004 and M w = 8.7 Nias 28 March 2005 earthquakes. Applying wavelet analyses to enhance those local signals in the GRACE time varying geoids up to September 2007, we detect a clear postseismic gravity signal. We supplement these gravity variations with GPS measurements of postseismic crustal displacements to constrain postseismic relaxation processes throughout the upper mantle. The observed GPS displacements and gravity variations are well explained by a model of visco-elastic relaxation plus a small amount of afterslip at the downdip extension of the coseismically ruptured fault planes. Our model uses a 60 km thick elastic layer above a viscoelastic asthenosphere with Burgers body rheology. The mantle below depth 220 km has a Maxwell rheology. Assuming a low transient viscosity in the 60–220 km depth range, the GRACE data are best explained by a constant steady state viscosity throughout the ductile portion of the upper mantle (e.g., 60–660 km). This suggests that the localization of relatively low viscosity in the asthenosphere is chiefly in the transient viscosity rather than the steady state viscosity. We find a 8.10 18 Pa s mantle viscosity in the 220–660 km depth range. This may indicate a transient response of the upper mantle to the high amount of stress released by the earthquakes. To fit the remaining misfit to the GRACE data, larger at the smaller spatial scales, cumulative afterslip of about 75 cm at depth should be added over the period spanned by the GRACE models. It produces only small crustal displacements. Our results confirm that satellite gravity data are an essential complement to ground geodetic and geophysical networks in order to understand the seismic cycle and the Earth's inner structure

    Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Nepal

    Get PDF
    We use two gravity profiles that we measured across Central Nepal, in conjunction with existing data, to constrain the mechanical behaviour and the petrological structure of the lithosphere in the Himalayan collision zone. The data show (1) overcompensation of the foreland and undercompensation of the Higher Himalaya, as expected from the flexural support of the range; (2) a steep gravity gradient of the order of 1.3 mgal km^(−1) beneath the Higher Himalaya, suggesting a locally steeper Moho; and (3) a 10 km wide hinge in southern Tibet. We compare these data with a 2-D mechanical model in which the Indian lithosphere is flexed down by the advancing front of the range and sedimentation in the foreland. The model assumes brittle Coulomb failure and non-linear ductile flow that depends on local temperature, which is computed from a steady-state thermal model. The computed Moho fits seismological constraints and is consistent with the main trends in the observed Bouguer anomaly. It predicts an equivalent elastic thickness of 40–50 km in the foreland. The flexural rigidity decreases northwards due to thermal and flexural weakening, resulting in a steeper Moho dip beneath the high range. Residuals at short wavelengths (over distances of 20–30 km) are interpreted in terms of (1) sediment compaction in the foreland (Δρ = 150 kg m^(−3) between the Lower and Middle Siwaliks); (2) the contact between the Tertiary molasse and the meta-sediments of the Lesser Himalaya at the MBT (Δρ = 220 kg m^(−3)); and (3) the Palung granite intrusion in the Lesser Himalaya (Δρ = 80 kg m^(−3)). Finally, if petrological transformations expected from the local (P, T) are assumed, a gravity signature of the order of 250 mgal is predicted north of the Lesser Himalaya, essentially due to eclogitization of the lower crust, which is inconsistent with the gravity data. We conclude that eclogitization of the Indian crust does not take place as expected from a steady-state local equilibrium assumption. We show, however, that eclogitization might actually occur beneath southern Tibet, where it could explain the hinge observed in the gravity data. We suspect that these eclogites are subducted with the Indian lithosphere

    Paternal UPD15: Further Genetic and Clinical Studies in Four Angelman Syndrome Patients

    Get PDF
    Among 25 patients diagnosed with Angelman syndrome, we detected 21 with deletion and 4 with paternal uniparental disomy (UPD), 2 isodisomies originating by postzygotic error, and 1 MII nondisjunction event. The diagnosis was obtained by molecular techniques, including methylation pattern analysis of exon 1 of SNRPN and microsatellite analysis of loci within and outside the 15q11-q13 region. Most manifestations present in deletion patients are those previously reported. Comparing the clinical data from our and published UPD patients with those with deletions we observed the following: the age of diagnosis is higher in UPD group (average 7 3 ⁄12 years), microcephaly is more frequent among deletion patients, UPD children start walking earlier (average age 2 9 ⁄12 years), whereas in deletion patients the average is 4 1 ⁄2 years, epilepsy started later in UPD patients (average 5 10 ⁄12 years) than in deletion patients (average 1 11 ⁄12 years), weight above the 75th centile is reported mainly in UPD patients, complete absence of speech is more common in the deleted (88.9%) than in the UPD patients because half of the children are able to say few words. Thus, besides the abnormalities already described, the UPD patients have somewhat better verbal development, a weight above the 75th centile, and OFC in the upper normal range. Am. J. Med. Genet. 92:322-327, 2000

    Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements

    Get PDF
    Geodetic and paleogeodetic measurements of interseismic strain above the Sumatran portion of the Sunda subduction zone reveal a heterogeneous pattern of coupling. Annual banding in corals provides vertical rates of deformation spanning the last half of the 20th century, and repeated GPS surveys between 1991 and 2001 and continuous measurements at GPS stations operated since 2002 provide horizontal velocities. Near the equator, the megathrust is locked over a narrow width of only a few tens of kilometers. In contrast, the locked fault zone is up to about 175 km wide in areas where great interplate earthquakes have occurred in the past. Formal inversion of the data reveals that these strongly coupled patches are roughly coincident with asperities that ruptured during these events. The correlation is most spectacular for rupture of the M_w 8.7 Nias-Simeulue earthquake of 2005, which released half of the moment deficit that had accumulated since its previous rupture in 1861, suggesting that this earthquake was overdue. Beneath the Mentawai islands, strong coupling is observed within the overlapping rupture areas of the great earthquakes of 1797 and 1833. The accumulated slip deficit since these events is slowly reaching the amount of slip that occurred during the 1833 earthquake but already exceeds the slip that occurred during the 1797 earthquake. Thus, rerupture of part of the Mentawai patch in September 2007 was not a surprise. In contrast, coupling is low below the Batu islands near the equator and around Enggano island at about 5°S, where only moderate earthquakes (M_w < 8.0) have occurred in the past two centuries. The correlation of large seismic asperities with patches that are locked during the interseismic period suggests that they are persistent features. This interpretation is reinforced by the fact that the large locked patches and great ruptures occur beneath persistent geomorphologic features, the largest outer arc islands. Depth- and convergence-rate-dependent temperature might influence the pattern of coupling, through its effect on the rheology of the plate interface, but other influences are required to account for the observed along-strike heterogeneity of coupling. In particular, subduction of the Investigator Fracture Zone could be the cause for the low coupling near the equator
    corecore