2,660 research outputs found

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    Making identity assurance and authentication strength work for federated infrastructures

    Get PDF
    In both higher Research and Education (R&E) as well as in research-/ e-infrastructures (in short: infrastructures), federated access and single sign-on by way of national federations, operated in most cases by NRENs, are used as a means to provide users with access to a variety of services. Whereas in national federations institutional accounts, e.g. provided by a university, are typically used to access services, many infrastructures also accept other sources of identity: provided by \u27\u27community identity providers\u27\u27, social identity providers, or governmental IDs. In order to assess and communicate the quality of identities being used and authentications being performed, so called Level of Assurance (LoA) frameworks are used. Because sophisticated LoA frameworks like NIST 800-63-3, Kantara IAF 1420 or eIDAS regulation are often considered too complex to be used in R&E scenarios, the REFEDS Assurance Suite, a more lightweight approach, has been developed. To select an appropriate assurance level, Service Providers need to weigh risks and potential harms in relation to the kind of service they offer. However, the management of risks is often implicitly assumed and little or no guidance to determine the appropriate assurance level is given. In this paper, first, common LoA frameworks and their relation to risk management are investigated. Following that, their components are compared against the REFEDS Assurance Suite using a graphical representation. The focus of this paper lies in providing guidance and best practices based on example scenarios for both Service Providers to request the appropriate REFEDS assurance level, as well as for Identity Provider operators on how to implement REFEDS assurance components

    The long-period Galactic Cepheid RS Puppis - II. 3D structure and mass of the nebula from VLT/FORS polarimetry

    Full text link
    The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.Comment: 14 pages, 21 figures. Accepted for publication in A&

    On the evolutionary and pulsation mass of Classical Cepheids: III. the case of the eclipsing binary Cepheid CEP0227 in the Large Magellanic Cloud

    Full text link
    We present a new Bayesian approach to constrain the intrinsic parameters (stellar mass, age) of the eclipsing binary system CEP0227 in the LMC. We computed evolutionary models covering a broad range in chemical compositions and in stellar mass. Independent sets of models were constructed either by neglecting or by including a moderate convective core overshooting (beta=0.2) during central H-burning phases. Models were also constructed either by neglecting or by assuming a canonical (eta=0.4,0.8) or an enhanced (eta=4) mass loss rate. The solutions were computed in three different planes: luminosity-temperature, mass-radius and gravity-temperature. By using the Bayes Factor, we found that the most probable solutions were obtained in the gravity-temperature plane with a Gaussian mass prior distribution. The evolutionary models constructed by assuming a moderate convective core overshooting (beta=0.2) and a canonical mass loss rate (eta=0.4) give stellar masses for the primary Cepheid M=4.14^{+0.04}_{-0.05} M_sun and for the secondary M=4.15^{+0.04}_{-0.05} M_sun that agree at the 1% level with dynamical measurements. Moreover, we found ages for the two components and for the combined system t=151^{+4}_{-3} Myr that agree at the 5% level. The solutions based on evolutionary models that neglect the mass loss attain similar parameters, while those ones based on models that either account for an enhanced mass loss or neglect convective core overshooting have lower Bayes Factors and larger confidence intervals. The dependence on the mass loss rate might be the consequence of the crude approximation we use to mimic this phenomenon. By using the isochrone of the most probable solution and a Gaussian prior on the LMC distance, we found a distance modulus 18.53^{+0.02}_{-0.02} mag and a reddening value E(B-V)= 0.142^{+0.005}_{-0.010} mag that agree well with literature estimates.Comment: Accepted for publication in ApJ. 17 pages, 9 figure

    Superconductivity in correlated disordered two-dimensional electron gas

    Full text link
    We calculate the dynamic effective electron-electron interaction potential for a low density disordered two-dimensional electron gas. The disordered response function is used to calculate the effective potential where the scattering rate is taken from typical mobilities from recent experiments. We investigate the development of an effective attractive pair potential for both disordered and disorder free systems with correlations determined from existing numerical simulation data. The effect of disorder and correlations on the superconducting critical temperature Tc is discussed.Comment: 4 pages, RevTeX + epsf, 4 figure

    Liquid Xenon Detectors for Positron Emission Tomography

    Full text link
    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).Comment: Paper presented at the International Nuclear Physics Conference, Vancouver, Canada, 201

    Many-body correlations probed by plasmon-enhanced drag measurements in double quantum well structures

    Full text link
    Electron drag measurements of electron-electron scattering rates performed close to the Fermi temperature are reported. While evidence of an enhancement due to plasmons, as was recently predicted [K. Flensberg and B. Y.-K. Hu, Phys. Rev. Lett. 73, 3572 (1994)], is found, important differences with the random-phase approximation based calculations are observed. Although static correlation effects likely account for part of this difference, it is argued that correlation-induced multiparticle excitations must be included to account for the magnitude of the rates and observed density dependences.Comment: 4 pages, 3 figures, revtex Accepted in Phys. Rev.
    • 

    corecore