15,639 research outputs found
Magnetic fields at the periphery of UCHII regions from carbon recombination line observations
Several indirect evidences indicate a magnetic origin for the non-thermal
width of spectral lines observed toward molecular clouds. In this letter, I
suggest that the origin of the non-thermal width of carbon recombination lines
(CRLs) observed from photo-dissociation regions (PDRs) near ultra-compact \HII\
regions is magnetic and that the magnitude of the line width is an estimate of
the \alfven speed. The magnetic field strengths estimated based on this
suggestion compare well with those measured toward molecular clouds with
densities similar to PDR densities. I conclude that multi-frequency CRL
observations have the potential to form a new tool to determine the field
strength near star forming regions.Comment: To appear in ApJ Letter
Jamming, two-fluid behaviour and 'self-filtration' in concentrated particulate suspensions
We study the flow of model experimental hard sphere colloidal suspensions at
high volume fraction driven through a constriction by a pressure
gradient. Above a particle-size dependent limit , direct microscopic
observations demonstrate jamming and unjamming--conversion of fluid to solid
and vice versa--during flow. We show that such a jamming flow produces a
reduction in colloid concentration downstream of the constriction.
We propose that this `self-filtration' effect is the consequence of a
combination of jamming of the particulate part of the system and continuing
flow of the liquid part, i.e. the solvent, through the pores of the jammed
solid. Thus we link the concept of jamming in colloidal and granular media with
a 'two-fluid'-like picture of the flow of concentrated suspensions. Results are
also discussed in the light of Osborne Reynolds' original experiments on
dilation in granular materials.Comment: 4 pages, 3 figure
Dark cloud cores and gravitational decoupling from turbulent flows
We test the hypothesis that the starless cores may be gravitationally bound
clouds supported largely by thermal pressure by comparing observed molecular
line spectra to theoretical spectra produced by a simulation that includes
hydrodynamics, radiative cooling, variable molecular abundance, and radiative
transfer in a simple one-dimensional model. The results suggest that the
starless cores can be divided into two categories: stable starless cores that
are in approximate equilibrium and will not evolve to form protostars, and
unstable pre-stellar cores that are proceeding toward gravitational collapse
and the formation of protostars. The starless cores might be formed from the
interstellar medium as objects at the lower end of the inertial cascade of
interstellar turbulence. Additionally, we identify a thermal instability in the
starless cores. Under par ticular conditions of density and mass, a core may be
unstable to expansion if the density is just above the critical density for the
collisional coupling of the gas and dust so that as the core expands the
gas-dust coupling that cools the gas is reduced and the gas warms, further
driving the expansion.Comment: Submitted to Ap
Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe
We study the evolution of an isolated, spherical halo of self-interacting
dark matter (SIDM) in the gravothermal fluid formalism. We show that the
thermal relaxation time, , of a SIDM halo with a central density and
velocity dispersion of a typical dwarf galaxy is significantly shorter than its
age. We find a self-similar solution for the evolution of a SIDM halo in the
limit where the mean free path between collisions, , is everywhere
longer than the gravitational scale height, . Typical halos formed in this
long mean free path regime relax to a quasistationary gravothermal density
profile characterized by a nearly homogeneous core and a power-law halo where
. We solve the more general time-dependent problem and
show that the contracting core evolves to sufficiently high density that
inevitably becomes smaller than in the innermost region. The core
undergoes secular collapse to a singular state (the ``gravothermal
catastrophe'') in a time , which is longer than the
Hubble time for a typical dark matter-dominated galaxy core at the present
epoch. Our model calculations are consistent with previous, more detailed,
N-body simulations for SIDM, providing a simple physical interpretation of
their results and extending them to higher spatial resolution and longer
evolution times. At late times, mass loss from the contracting, dense inner
core to the ambient halo is significantly moderated, so that the final mass of
the inner core may be appreciable when it becomes relativistic and radially
unstable to dynamical collapse to a black hole.Comment: ApJ in press (to appear in April), 12 pages. Extremely minor changes
to agree with published versio
The Jovian atmospheric window at 2.7 microns: A search for H2S
The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted
Numerical studies of a one-dimensional 3-spin spin-glass model with long-range interactions
We study a p-spin spin-glass model to understand if the finite-temperature
glass transition found in the mean-field regime of p-spin models, and used to
model the behavior of structural glasses, persists in the non-mean-field
regime. By using a 3-spin spin-glass model with long-range power-law diluted
interactions we are able to continuously tune the (effective) space dimension
via the exponent of the interactions. Monte Carlo simulations of the spin-glass
susceptibility and the two-point finite-size correlation length show that deep
in the non-mean-field regime the finite-temperature transition is lost, whereas
this is not the case in the mean-field regime, in agreement with the prediction
of Moore and Drossel [Phys. Rev. Lett. 89, 217202 (2002)] that 3-spin models
are in the same universality class as an Ising spin glass in a magnetic field.
However, slightly in the non-mean-field region, we find an apparent transition
in the 3-spin model, in contrast to results for the Ising spin glass in a
field. This may indicate that even larger sizes are needed to probe the
asymptotic behavior in this region.Comment: 8 pages, 9 figures, 1 tabl
A Relativistic Version of the Two-Level Atom in the Rest-Frame Instant Form of Dynamics
We define a relativistic version of the two-level atom, in which an extended
atom is replaced by a point particle carrying suitable Grassmann variables for
the description of the two-level structure and of the electric dipole. After
studying the isolated system "atom plus the electro-magnetic field" in the
electric-dipole representation as a parametrized Minkowski theory, we give its
restriction to the inertial rest frame and the explicit form of the Poincar\'e
generators. After quantization we get a two-level atom with a spin 1/2 electric
dipole and the relativistic generalization of the Hamiltonians of the Rabi and
Jaynes-Cummings models.Comment: 23 page
Velocity-resolved observations of water in Comet Halley
High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets
NEW AND UPDATED RECORDS FOR AMPHIBIANS AND REPTILES IN MINNESOTA, USA
Following the publication of the revised edition of “Amphibians and Reptiles in Minnesota” by Moriarty and Hall (2014), we accessioned several new or updated records at the Bell Museum of Natural History (JFBM). Records include digital photographs (accession number preceded by “P”) and audio recordings (accession number preceded by “AUD”). In addition, a subset of these observations were accessioned in www.HerpMapper.org. HerpMapper accession numbers are preceded by “HM” and can be viewed online. Benjamin Lowe verified species determinations. Latitude and longitude coordinates are based on datum WGS 84
- …