12,338 research outputs found

    Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization

    Full text link
    The spectra of the first galaxies and quasars in the Universe should be strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by neutral hydrogen (HI) in the intervening intergalactic medium. However, the Lyman-alpha line photons emitted by these sources are not eliminated but rather scatter until they redshift out of resonance and escape due to the Hubble expansion of the surrounding intergalactic HI. We calculate the resulting brightness distribution and the spectral shape of the diffuse Lyman-alpha line emission around high redshift sources, before the intergalactic medium was reionized. Typically, the Lyman-alpha photons emitted by a source at z=10 scatter over a characteristic angular radius of order 15 arcseconds around the source and compose a line which is broadened and redshifted by about a thousand km/s relative to the source. The scattered photons are highly polarized. Detection of the diffuse Lyman-alpha halos around high redshift sources would provide a unique tool for probing the neutral intergalactic medium before the epoch of reionization. On sufficiently large scales where the Hubble flow is smooth and the gas is neutral, the Lyman-alpha brightness distribution can be used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3 corrected; new section added on the detectability of Lyman alpha halos; conclusions update

    Fault-tolerant quantum computation with high threshold in two dimensions

    Get PDF
    We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors.Comment: 4 pages, 4 figures; v2: A single 2D layer of qubits (simple square lattice) with nearest-neighbor translation-invariant Ising interaction suffices. Slightly improved threshol

    Intrinsic dissipation in high-frequency micromechanical resonators

    Get PDF
    We report measurements of intrinsic dissipation in micron-sized suspended resonators machined from single crystals of galium arsenide and silicon. In these experiments on high-frequency micromechanical resonators, designed to understand intrinsic mechanisms of dissipation, we explore dependence of dissipation on temperature, magnetic field, frequency, and size. In contrast to most of the previous measurements of acoustic attenuation in crystalline and amorphous structures in this frequency range, ours is a resonant measurement; dissipation is measured at the natural frequencies of structural resonance, or modes of the structure associated with flexural and torsional motion. In all our samples we find a weakly temperature dependent dissipation at low temperatures. We compare and contrast our data to various probable mechanisms, including thermoelasticity, clamping, anharmonic mode-coupling, surface anisotropy and defect motion, both in bulk and on surface. The observed parametric dependencies indicate that the internal defect motion is the dominant mechanism of intrinsic dissipation in our samples

    Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

    Get PDF
    We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA

    Models for Dusty Lyman alpha Emitters at High Redshift

    Full text link
    Models are presented for the Lyman alpha emission of dusty high-redshift galaxies by combining the Press-Schechter formalism with a treatment of the inhomogeneous dust distribution inside galaxies. It is found that the amount of Lyman alpha radiation escaping from the galaxies strongly depends on the time over which the dust is produced through stellar activity, and on the ambient inhomogeneity of the HII regions that surround the ionizing OB stars. Good agreement is found with recent observations, as well as previous non-detections. Our models indicate that the dust content builds up in no more than approximately 5x10^8 yr, the galactic HII regions are inhomogeneous with a cloud covering factor of order unity, and the overall star formation efficiency is at least about 5%. It is predicted that future observations can detect these Lyman alpha galaxies upto redshifts of about 8.Comment: 16 pages, 4 figures, submitted to Ap

    Delays in Leniency Application: Is There Really a Race to the Enforcer's Door?

    Get PDF
    This paper studies cartels’ strategic behavior in delaying leniency applications, a take-up decision that has been ignored in the previous literature. Using European Commission decisions issued over a 16-year span, we show, contrary to common beliefs and the existing literature, that conspirators often apply for leniency long after a cartel collapses. We estimate hazard and probit models to study the determinants of leniency-application delays. Statistical tests find that delays are symmetrically affected by antitrust policies and macroeconomic fluctuations. Our results shed light on the design of enforcement programs against cartels and other forms of conspiracy

    Cellular Models of Aggregation-Dependent Template-Directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer's Disease

    Get PDF
    Copyright © 2015, The American Society for Biochemistry and Molecular Biology. Acknowledgements-We thank Drs Timo Rager and Rolf Hilfiker (Solvias, Switzerland) for polymorph analyses.Peer reviewedPublisher PD

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials
    corecore