74,992 research outputs found

    Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: implications for athlete welfare

    Get PDF
    To test the hypothesis that daily weight-making is more problematic to health in male compared with female jockeys, we compared the bone-density and resting metabolic rate (RMR) in weight-matched male and female Flat-jockeys. RMR (kcal.kg-1 lean mass) was lower in males compared with females as well as lower bone-density Z-scores at the hip and lumbar spine. Data suggest the lifestyle of male jockeys’ compromise health more severely than females, possibly due to making-weight more frequently

    Are there spurious temperature trends in the United States Climate Division database

    Get PDF
    The United States (U.S.) Climate Division data set is commonly used in applied climatic studies in the United States. The divisional averages are calculated by including all available stations within a division at any given time. The averages are therefore vulnerable to shifts in average station location or elevation over time, which may introduce spurious trends within these data. This paper examines temperature trends within the 15 climate divisions of New England, comparing the NCDC\u27s U.S. Divisional Data to the U.S. Historical Climate Network (USHCN) data. Correlation and multiple regression revealed that shifts in latitude, longitude, and elevation have affected the quality of the NCDC divisional data with respect to the USHCN. As a result, there may be issues with regard to their use in decadal- to century-scale climate change studies

    Wave Energy Amplification in a Metamaterial based Traveling Wave Structure

    Full text link
    We consider the interaction between a particle beam and a propagating electromagnetic wave in the presence of a metamaterial. We show that the introduction of a metamaterial gives rise to a novel dispersion curve which determines a unique wave particle relationship, via the frequency dependence of the metamaterial and the novel ability of metamaterials to exhibit simultaneous negative permittivity and permeability. Using a modified form of Madey's theorem we find that the novel dispersion of the metamaterial leads to a amplification of the EM wave power

    Transformer Oil Passivation and Impact of Corrosive Sulphur

    No full text
    In recent years a significant volume of research has been undertaken in order to understand the recent failures in oil insulated power apparatus due to deposition of copper sulphide on the conductors and in the insulation paper. Dibenzyl Disulfide (DBDS) has been found to be the leading corrosive sulphur compound in the insulation oil [1]. The process of copper sulphide formation and the deposition in the paper is still being investigated, but a recently proposed method seems to be gaining some confidence [1]. This method suggests a two-step process; initially the DBDS and some oil soluble copper complexes are formed. Secondly the copper complexes are absorbed in the paper insulation, where they then decompose into copper sulphide [2]. The most commonly used mitigating technique for corrosive sulphur contaminated oil is passivation, normally using Irgamet 39 or 1, 2, 3-benzotriazole (BTA). The passivator is diluted into the oil to a concentration of around 100ppm, where it then reacts with the copper conductors to form a complex layer around the copper, preventing it from interacting with DBDS compounds and forming copper sulphide. This research project will investigate the electrical properties of HV transformers which have tested positive for corrosive sulphur, and the evolution of those properties as the asset degrades due to sulphur corrosion. Parallel to this the long term properties of transformers with passivated insulation oil will be analysed in order to understand the passivator stability and whether it is necessary to keep adding the passivator to sustain its performance. Condition monitoring techniques under investigation will include dielectric spectroscopy, frequency response analysis, recovery voltage method (aka interfacial polarisation) amongst others. Partial discharge techniques will not be investigated, as the voltage between the coil plates is low and therefore it will not contribute significantly to the overall insulation breakdown, in corrosive oil related faults [3]. The goal of this research is to establish key electrical properties in both passivated and non-passivated power transformers that demonstrate detectable changes as the equipment degrades due to the insulation oil being corrosive

    Condensation temperature of interacting Bose gases with and without disorder

    Full text link
    The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.Comment: 7 pages, 2 figure

    Exact Integration of the High Energy Scale in Doped Mott Insulators

    Full text link
    We expand on our earlier work (cond-mat/0612130, Phys. Rev. Lett. {\bf 99}, 46404 (2007)) in which we constructed the exact low-energy theory of a doped Mott insulator by explicitly integrating (rather than projecting) out the degrees of freedom far away from the chemical potential. The exact low-energy theory contains degrees of freedom that cannot be obtained from projective schemes. In particular a new charge ±2e\pm 2e bosonic field emerges at low energies that is not made out of elemental excitations. Such a field accounts for dynamical spectral weight transfer across the Mott gap. At half-filling, we show that two such excitations emerge which play a crucial role in preserving the Luttinger surface along which the single-particle Green function vanishes. In addition, the interactions with the bosonic fields defeat the artificial local SU(2) symmetry that is present in the Heisenberg model. We also apply this method to the Anderson-U impurity and show that in addition to the Kondo interaction, bosonic degrees of freedom appear as well. Finally, we show that as a result of the bosonic degree of freedom, the electron at low energies is in a linear superposition of two excitations--one arising from the standard projection into the low-energy sector and the other from the binding of a hole and the boson.Comment: Published veriso

    The dimension of loop-erased random walk in 3D

    Full text link
    We measure the fractal dimension of loop-erased random walk (LERW) in 3 dimensions, and estimate that it is 1.62400 +- 0.00005. LERW is closely related to the uniform spanning tree and the abelian sandpile model. We simulated LERW on both the cubic and face-centered cubic lattices; the corrections to scaling are slightly smaller for the face-centered cubic lattice.Comment: 4 pages, 4 figures. v2 has more data, minor additional change
    • …
    corecore