1,856 research outputs found
Non-leptonic two-body decays of the Bc meson in light-front quark model and QCD factorization approach
We study exclusive non-leptonic two-body
decays with (pseudoscalar or vector meson) being factored out in QCD
factorization approach. The non-leptonic decay amplitudes are related to the
product of meson decay constants and the form factors for semileptonic
decays. As inputs in obtaining the branching ratios for a large set of
non-leptonic decays, we use the weak form factors for the semileptonic
decays in the whole kinematical region and the
unmeasured meson decay constants obtained from our previous light-front quark
model. We compare our results of the branching ratios with those of other
theoretical studies.Comment: 11 pages, 3 figures, minor corrections, version to appear in PR
Refractive Index Enhancement with Vanishing Absorption in an Atomic Vapor
We report a proof-of-principle experiment where the refractive index of an
atomic vapor is enhanced while maintaining vanishing absorption of the beam.
The key idea is to drive alkali atoms in a vapor with appropriate control
lasers and induce a gain resonance and an absorption resonance for a probe beam
in a two-photon Raman configuration. The strength and the position of these two
resonances can be manipulated by changing the parameters of the control lasers.
By using the interference between these two resonances, we obtain an enhanced
refractive index without an increase in the absorption.Comment: 11 pages, 4 figure
Realistic modeling of strongly correlated electron systems: An introduction to the LDA+DMFT approach
The LDA+DMFT approach merges conventional band structure theory in the local
density approximation (LDA) with a state-of-the-art many-body technique, the
dynamical mean-field theory (DMFT). This new computational scheme has recently
become a powerful tool for ab initio investigations of real materials with
strong electronic correlations. In this paper an introduction to the basic
ideas and the set-up of the LDA+DMFT approach is given. Results for the
photoemission spectra of the transition metal oxide La_{1-x}Sr_xTiO_3, obtained
by solving the DMFT-equations by quantum Monte-Carlo (QMC) simulations, are
presented and are found to be in very good agreement with experiment. The
numerically exact DMFT(QMC) solution is compared with results obtained by two
approximative solutions, i.e., the iterative perturbation theory and the
non-crossing approximation.Comment: 15 pages, 3 figures, SCES-Y2K Conference Proceeding
Correlated metals and the LDA+U method
While LDA+U method is well established for strongly correlated materials with
well localized orbitals, its application to weakly correlated metals is
questionable. By extending the LDA Stoner approach onto LDA+U, we show that
LDA+U enhances the Stoner factor, while reducing the density of states.
Arguably the most important correlation effects in metals, fluctuation-induced
mass renormalization and suppression of the Stoner factor, are missing from
LDA+U. On the other hand, for {\it moderately} correlated metals LDA+U may be
useful. With this in mind, we derive a new version of LDA+U that is consistent
with the Hohenberg-Kohn theorem and can be formulated as a constrained density
functional theory. We illustrate all of the above on concrete examples,
including the controversial case of magnetism in FeAl.Comment: Substantial changes. In particular, examples of application of the
proposed functional are adde
Orbital densities functional
Local density approximation (LDA) to the density functional theory (DFT) has
continuous derivative of total energy as a number of electrons function and
continuous exchange-correlation potential, while in exact DFT both should be
discontinuous as number of electrons goes through an integer value. We propose
orbital densities functional (ODF) (with orbitals defined as Wannier functions)
that by construction obeys this discontinuity condition. By its variation
one-electron equations are obtained with potential in the form of projection
operator. The operator increases a separation between occupied and empty bands
thus curing LDA deficiency of energy gap value systematic underestimation.
Orbital densities functional minimization gives ground state orbital and total
electron densities. The ODF expression for the energy of orbital densities
fluctuations around the ground state values defines ODF fluctuation Hamiltonian
that allows to treat correlation effects. Dynamical mean-field theory (DMFT)
was used to solve this Hamiltonian with quantum Monte Carlo (QMC) method for
effective impurity problem. We have applied ODF method to the problem of
metal-insulator transition in lanthanum trihydride LaH_{3-x}. In LDA
calculations ground state of this material is metallic for all values of
hydrogen nonstoichiometry x while experimentally the system is insulating for x
< 0.3. ODF method gave paramagnetic insulator solution for LaH_3 and LaH_{2.75}
but metallic state for LaH_{2.5}.Comment: 35 pages, 5 figure
Spectral functions for strongly correlated 5f-electrons
We calculate the spectral functions of model systems describing 5f-compounds
adopting Cluster Perturbation Theory. The method allows for an accurate
treatment of the short-range correlations. The calculated excitation spectra
exhibit coherent 5f bands coexisting with features associated with local
intra-atomic transitions. The findings provide a microscopic basis for partial
localization. Results are presented for linear chains.Comment: 10 Page
Combining the Hybrid Functional Method with Dynamical Mean-Field Theory
We present a new method to compute the electronic structure of correlated
materials combining the hybrid functional method with the dynamical mean-field
theory. As a test example of the method we study cerium sesquioxide, a strongly
correlated Mott-band insulator. The hybrid functional part improves the
magnitude of the pd-band gap which is underestimated in the standard
approximations to density functional theory while the dynamical mean-field
theory part splits the 4f-electron spectra into a lower and an upper Hubbard
band.Comment: 5 pages, 2 figures, replaced with revised version, published in
Europhys. Let
Effects of detector efficiency mismatch on security of quantum cryptosystems
We suggest a type of attack on quantum cryptosystems that exploits variations
in detector efficiency as a function of a control parameter accessible to an
eavesdropper. With gated single-photon detectors, this control parameter can be
the timing of the incoming pulse. When the eavesdropper sends short pulses
using the appropriate timing so that the two gated detectors in Bob's setup
have different efficiencies, the security of quantum key distribution can be
compromised. Specifically, we show for the Bennett-Brassard 1984 (BB84)
protocol that if the efficiency mismatch between 0 and 1 detectors for some
value of the control parameter gets large enough (roughly 15:1 or larger), Eve
can construct a successful faked-states attack causing a quantum bit error rate
lower than 11%. We also derive a general security bound as a function of the
detector sensitivity mismatch for the BB84 protocol. Experimental data for two
different detectors are presented, and protection measures against this attack
are discussed.Comment: v3: identical to the journal version. However, after publication we
have discovered that Eq. 11 is incorrect: the available bit rate after
privacy amplification is reduced even in the case (QBER)=0 [see Quant. Inf.
Comp. 7, 73 (2007)
Transport in the static diffusion cloud chamber revisited
The static diffusion chamber (SDC) allows the measurement of critical supersaturation and of nucleation rates and it is a powerful instrument for the vapor nucleation study. Earlier, within the scope of the International Nucleation Workshop Group, nucleation rates of the n-pentanol–helium system have been measured using different experimental techniques. Disagreement of experimental data obtained using the static diffusion chamber and data obtained using other methods, particularly the laminar flow diffusion chamber, can be explained by re-examining the mass and energy transport analysis used to describe static diffusion chamber operation. In the present research we describe the mass and energy transport in the SDC modeled as an effectively open system with mass and energy transport in one direction with a nonzero diffusion flux at the system boundaries. Calculated values for vapor supersaturation are compared with the n-pentanol nucleation rate experimental results of the American–Czech group [M. Rudek, J. L. Katz, I. Y. Vidensky et al., J. Chem. Phys. 111, 3623 (1999)] and with a nucleation rate Reference Equation obtained from an earlier investigation involving the n-pentanol–helium system. From our results one can see that there is a significant difference in the calculated supersaturation for all of the data. The magnitude of this difference is quite large even for the relatively small vapor mass fractions at a nucleation temperature of 260 K. We also note that the calculated nucleation temperatures from our analysis are slightly larger than those reported in the work of Rudek et al.4 We performed our calculations with and without the thermal diffusion term. We observed that the effect of thermal diffusion on the transport process is relativelly small and is not particularly essential to include in this comparison that we are making the effects of the different flux boundary conditions
- …