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The static diffusion chamber (SDC) allows the measurement of critical supersaturation and of
nucleation rates and it is a powerful instrument for the vapor nucleation study. Earlier, within the
scope of the International Nucleation Workshop Group, nucleation rates of the n-pentanol—helium
system have been measured using different experimental techniques. Disagreement of experimental
data obtained using the static diffusion chamber and data obtained using other methods, particularly
the laminar flow diffusion chamber, can be explained by re-examining the mass and energy
transport analysis used to describe static diffusion chamber operation. In the present research we
describe the mass and energy transport in the SDC modeled as an effectively open system with mass
and energy transport in one direction with a nonzero diffusion flux at the system boundaries.
Calculated values for vapor supersaturation are compared with the n-pentanol nucleation rate
experimental results of the American—-Czech group [M. Rudek, J. L. Katz, I. Y. Vidensky ez al., J.
Chem. Phys. 111, 3623 (1999)] and with a nucleation rate Reference Equation obtained from an
earlier investigation involving the n-pentanol-helium system. From our results one can see that
there is a significant difference in the calculated supersaturation for all of the data. The magnitude
of this difference is quite large even for the relatively small vapor mass fractions at a nucleation
temperature of 260 K. We also note that the calculated nucleation temperatures from our analysis
are slightly larger than those reported in the work of Rudek er al.* We performed our calculations
with and without the thermal diffusion term. We observed that the effect of thermal diffusion on the
transport process is relativelly small and is not particularly essential to include in this comparison
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that we are making the effects of the different flux boundary conditions.

Institute of Physics. [DOL: 10.1063/1.1318735]

I. INTRODUCTION

Experimental research of homogeneous nucleation kinet-
ics in supersaturated vapors is based on the determination of
the relation between nucleation rate and, as a rule, vapor
supersaturation (activity) while maintaining other parameters
constant. The static diffusion chamber (SDC) allows mea-
surement of critical supersaturation and of nucleation rates
and it is a powerful instrument for the vapor nucleation
study. Within the scope of the International Nucleation
Workshop Group,! nucleation rates of the n-pentanol—
helium system have been measured using different experi-
mental techniques.”~> Disagreement of experimental data ob-
tained using the static diffusion chamber and data obtained
using other methods, particularly the laminar flow diffusion
chamber, can be explained by re-examining the mass and
energy transport analysis used to describe static diffusion
chamber operation. There appear to be no other reasons for
this disagreement, since the sample working fluid and the
system parameters were the same for all groups. Recently the
effect of the radial vapor flow to chamber sidewall®’ has
been discussed. Good agreement between one-dimensional
and two-dimensional models (with zero mass average veloci-
ties at boundary) has been achieved.

0021-9606/2001/114(2)/899/8/$18.00
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It is customary to consider that the diffusion flux is zero
at the chamber boundaries where the vapor is in equilibrium
with the wet surfaces. However, the SDC can be considered
as an open system along the direction of transport of vapor
from the hot surface boundary to the cold surface boundary.
In this model, the assumption of a zero vapor flux to a
boundary surface is not correct. In this case, zero vapor flux
may be only be realized in the case of zero vapor concentra-
tion, For the case of nonzero vapor concentration there are
three boundary conditions that are required for solution of
the second order differential equation with two integration
constants, i.e., the first two are the equilibrium vapor concen-
trations at the hot and cold surfaces and the third is the zero
value for the vapor diffusion flux. Recently the nonzero dif-
fusion vapor flux to the boundary surfaces was accounted for
in the initial transport equations.® The resulting numerical
solution® is in a good agreement with the existing one-
dimensional model based on a numerical solution of the
Stefan—Maxwell and heat transfer equations.

In the research reported here we describe the mass and
energy transport in the SDC modeled as an open system with
mass and energy transport in one direction with a nonzero
diffusion flux at the system boundaries. Calculated values for

© 2001 American Institute of Physics
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vapor supersaturation are compared with the n-pentanol
nucleation rate experimental results of the American—Czech
group® and with a nucleation rate Reference Equation ob-
tained from an earlier investigation involving the
n-pentanol—helium system.5

Il. SYSTEM EQUATIONS

To describe the heat and mass transfer in the SDC (or
the flow diffusion chamber), we apply the Navier—Stokes
equations for a system with axial symmetry and stationary
flow. The heat and mass transfer equations in vector form
may be found in the monographsg)’10 listed in the References.
A specific application of these equations for the system un-
der consideration here is presented in the Appendix. Using
differential operators expressed in the cylindrical coordinate
system, the heat and mass transport equations may be pre-
sented as

a 1
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Here Egs. (1) and (2) are continuity equations for the mixture
and the vapor, respectively; Eqs. (3) and (4) are the equations
of motion in the axial and radial directions, respectively; Eq.
(5) is the energy equation. The expressions for the vapor

mass diffusion flux and heat flux in the radial and axial di-
rections, respectively, can be written in the form,

(5)
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The above system of equations can be applied to the descrip-
tion of any cylindrically symmetric heat and mass transfer
process. The specific features of such process are made ap-
parent through the proper choice of boundary conditions. In
our present discussion a heat and mass transfer problem in
the SDC is considered. To complete the system of Eqgs. (1)-
(9) the equation of state for an ideal gas is used in the form,

p=pR,T/M. (10)

Here R, is gas universal constant. Other nomenclature, used
in this work is presented in Table I.

Ill. BOUNDARY CONDITIONS

The static diffusion chamber consists of two wet sur-
faces, separated by ring with radius, R, and height, H. It is
assumed that at the hot surface with temperature, T, and at
the cold surface with temperature, 7, the vapor concentra-
tions are equal to the saturated (equilibrium) vapor concen-
trations, ¢y and ¢, respectively,

(C)z=0:Csat(T0):C0’ (C)z=H:Csal(T1):C1- (11)

The mass average velocity at either surface is deter-
mined from condition that the background gas does not pen-
etrate either wet surface. At =0 this condition gives

(1=co)pouyg—Jx=0. (12)

As it is mentioned above, the SDC can be considered as an
(effectively) open system in one direction because the mass
flux of vapor passes from one boundary (hot plate) to the
other boundary (cold plate). For this reason the concept of
using a zero mass average velocity for the vapor flux at ei-
ther system boundary is not desirable, so in the present work
we employ the conditions shown in Eq. (11) along with a
nonzero diffusion flux of the vapor through the system
boundaries, i.e., Eq. (12). To ensure a negligible radial vapor
diffusion flux component relative to the axial component we
employ a large diameter to height ratio, e.g., D/H= 10, see
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TABLE I. Nomenclature and the reduced variables.

Nomenclature Symbol Reduced variables
Vapor mass c
fraction
Coordinate in z H
axial direction
from bottom
Coordinate in r R
radial direction
from axis
Axial mass Ja 122=J_zoPoD?2/H,
diffusion flux - B o0 e
of vapor J20=(cl/ 7)o+ M M1 k7,(3T/ 97,
Radial mass J s JS=J0%HIR)
diffusion flux
of vapor
4:0=qz0hoTo/H,
Axial heat flux q, B :_(J_T +Le*1(;; L 2, R, \.
90 x), 0 27y _—_Co(l—co) —Mofpo Jz0
Radial heat flux q, 4,,=q (H/R)
Axial velocity u Ug= nglpo(l —cg)
Radial velocity v vog=uy(H/R)
Total pressure P Py
Temperature T To
Density of p Po=MoPo/(R,Ty)
mixture
Molar mass of M, M, M 1—¢g )"
gas, vapor, and M0=( M, + E)
mixture
Viscosity of gas, M1 py s Mo= p(co,Tp)
vapor, mixture
Binary diffusion Dy, D%=D\x(cy.Tp)
coefficient
Thermodiffusion ks Or @y K2y =kps(cy,To) or %= ay(co,Ty)
factor for vapor
Thermal ALALA Ap=A(cqg,Tp)
conductivity of
gas, vapor,
mixture
Specific heat Cp1>Cp2>Cp cP0=(1—c0)c‘,’,l+c0c°,,2
capacity at
constant pressure
Specific enthalpy hyhy h ho=cpoTy
of gas, vapor,
mixture
Collision integral QED(kTle) QD (kT te)

Ref. 6(a) for details. This conditions also permits the use of

J.0=(2):=0=J0poD %/ H,

a one-dimensional approximation for the heat and mass

transport processes in the SDC.

J20=0¢10Z)o+ MM 1k3o(3T/97) g+ co(1— co) (M,

To simplify the initial governing equations, it is conve-

901

nient to reduce the equations to dimensionless form using the — M) (3p/9Z)g, (13)
driving forces and the chamber size as the scaling factors.
9:0=(4:0);=0= G0N oTo/H,
IV. DIMENSIONLESS FORM OF THE SYSTEM _
EQUATIONS G.0=—(8T/3Z)g+Le,
According to the flux boundary conditions, the axial va- _ k(%z R, \_
por and heat fluxes in the SDC appear as the gradients of X\ hy—hyot Jwo- (14)

coll—co) Mocpy

vapor concentration and temperature between the surfaces.
Thus, the driving forces in the axial direction are due to these
gradients, Hence scaling factors for the axial vapor diffusion
and heat fluxes (as primary values) may be defined from Eqs.
(7) and (9), respectively, as

Assuming that the appropriate gradients in the radial direc-
tions are of the same order as in the axial directions, we
obtain the analogous expressions, (7) and (8), for the radial
vapor diffusion and heat fluxes. Here we use the height, H,
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and radius, R, of the SDC as length scales in the axial and
radial directions, respectively. The scale of axial velocity (as
a secondary value) is defined according to the boundary con-
dition (12). The definitions of all the scaling factors used in
this analysis are shown in Table 1. Using these scaling fac-
tors we rewrite the system equations (1)—(5} in dimension-
less form as

19
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Here Eu=Py/poul, Fr=ul/gH, Sc=puo/peD}, Ley
=Ng/ pOD?zc po» and Re=pouoH/ gy are the Euler, Frood,
Schmidt, Lewis, and Reynolds numbers, respectively. We
use parameters, ¢ =H/R and 7=T /T, as the ratio of SDC
size (height and radius) and the ratio of cold and hot surface
temperatures, respectively. According to definitions of the
Euler number, it is seen that this number is very large. This
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can be seen to be the case more easily if we represent the
pressure using the average velocity of the molecules, v,
as P=nkT~ pvZ,, and the binary diffusion coefficient using
the mean free pass, lg, a8 D12~ o mer- Thus, the Euler
number may be expressed as Eu=((1 —cO)H/colmO])z. Us-
ing values for quantities typical of actual experiments with
H~1cm, I,;~10"° cm and cy~ 1/2, we see that it is of the
order of 10'°. In the same manner one can show that the Re,
Sc, and Fr numbers have values around unity. If the Euler
number is large than the equations of motion, the equation of
state and the energy equations for the system under consid-
eration can be simplified to the form,

op op o
p— _ re) M:
a7 = 0, pT/ 1, (18)
__aE+ ,__Oh
pi— te“pv—
a0z ar
q| 0 _ 1 ¢
=—Leo(l—c0>{—(—_qz+s%—_<rq,>). (19)
720 07 ¥ or

The equations of motion may be presented in the form (18)
because the pressure drop is taken to be zero at very large
Euler number. It should be noted, however, that in the flow
diffusion chamber even though the axial pressure gradient is
small it cannot be neglected since in that case it is a driving
force.

The system equations, (15)—(19), with appropriate
boundary conditions, can be solved numerically. Boundary
conditions appropriate for the experimental system under
study are given in dimensionless form as

(1) At bottom (hot) plate,

c=cy, T=1, a=1, =0 at z=0; (20)
(2) At top (cold) plate,

c=c,;, T=71 at =1, 21
(3) AtF=1:
wet wall: c=co(Tw), T=Ty, 0=0, 0=J,,(1—co)/p(1

—ceg(Tw)), ,=0; dry wall: J,,=0, T=Ty,, #=0, 7=0,
qr - qW( 4 ) .

Here we have assumed that temperature dependence,
Tw(2), and the additional heating flux, gy(Z) to keep the
wall dry are known and that the presence of the liquid flow
down the sidewall is neglected. However, we note that the
liquid film motion along the wall may not be simple in the
case of a wet wall when the vapor concentration gradient is
not uniform in the presence of the sidewall. For the purpose
of present work, namely, to show the effect of a nonzero
axial vapor diffusion flux, we discuss below simplifications
to the equations describing the heat and mass transport in the
SDC.

If we consider to small order the size ratio (g2~ 1071,
see Ref. 4), then the system of heat and mass transport equa-
tions may be written to an accuracy of O(&?) as

oJ

9 B =0, pEee——(1 22)
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J g,0 0
pii— = —Leg(1—co) =— —7, (23)
oz ij
- = - dc sz M]M2 (9T
J2j0= = PD;2 T T C (24)
Z T M? 07
o _dT
qz‘]zoz—)\—azj
_ k T R - _
+Leg | hy—hy+ = — T ajz0-
c(1=c) pg Mycpy
(25)

We show below that this system of equations with boundary
conditions (20) and (21) admits to an analytical solution for
the case of light carrier gas.

We note that for the dry wall condition the energy equa-
tion,

G.o 0
pi— = —Leg(1—co) 22 =
o7 7,07

j z0 <
can be reduced to one-dimension form when the additional
wall heating is represented such that radial heat flux is pro-
portional to radius, §,~7. We note here the frequent obser-
vations in the literature that in many SDC investigations
there is a significant dependence of nucleation rate on this

wall heating value. See Ref. 6(b) for a more detailed discus-
sion of this point.

r or

1 0
qz+82? _(fqr))

V. ONE-DIMENSION CONSIDERATION

After integration using the boundary condition (20), Egs.
(22) and (23) can be expressed as

ﬁﬁzl, .7Z2:(1_C)/(1—C0), (26)

_ - - Co _ _ —
(h—h(COaTO))JzZ]zO'l_:? = —Le()(l _CO)(qzqzo_qu)-
(27)

Substituting Eqs. (25) and (26) into Eq. (27) and using Eq.
(14) along with an expression for the specific enthalpy in
form h(c,T)=(1—c)h(T)+ch,(T) one obtains first,

teieo 52 1)
ol meoll M7 z),

L R ko [ co 1=cq koo T _
=| hy=hpt —— 2| 2 —2 1] |7,
ocpo Co \ ¢ 1=c k9. m

(28)

And, substituting the expression for vapor enthalpy one can
rewrite Eq. (28) as

_oT j _
- —]ZOC (A~ '+ B(c,T)/Ley),
— ¢

9z 1 (29)
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_ 1 R, kY
B(c,T):f_EpszJr s
T MOCPO Co
col—cokm T
x[1-=—=22 ],
C I_C sz M

Here we designate the constant of integration as
A~ I=— (ﬂT/(?Z)()(I _CO)/.]_.ZO .

Using Eqs. (24) and (26) one can express j, as

_ 1=co 0T | dc kp, MM
p °—(—+£ : 2). (30)

Jo=—pD
. “lec w\ar T 2

Here it is assumed that d7/97# 0. Substituting Eq. (30) into
Eq. (29) and after a simple transformation we obtain
A(l—¢)

dC_ X sz M]MZ

- 31
dT pDy, 1+Ley'A-B(e,T) T M> GV

Thus, we have the first order differential equation, where
the integration constant A is defined using one of two bound-
ary conditions for the vapor concentration at the surfaces
with different temperatures, T, and T, . Expressions for the
mass and heat transfer coefficients, as well as other thermo-
dynamic and hydrodynamic data used in Eq. (31) can be
found in Hirschfelder ez al.® or Reid et al.'' and the expres-
sions used in this analysis are given in Table II. (In Table II,
N, is the Avogadro number.) We note that the thermal dif-
fusion factor for the vapor given by Hirschfelder e al.,” kr,,
and that by Rudek et al.,* a,,, are not the same and are
related as

MM,
kn—Mz—=a]2c‘(1—c). (32)
The approximation for «, for the n-pentanol-helium system
used in the present investigation is given in Table II. Equa-
tion (31), when expressed using factor a5, has the following
form:

d {1—-c AQ(c, T 1—col| @
__( o) _ 0(c,T) _ _C( O)__I_Z, (33)
dT\1—¢c/ 1+Le;'A-B(c,T) l=c/ T
_ 1 — Rg —Cy 0 _
B(C,T)z _Epsz+ — (a]Z_aIZTM)’ (34)
T Mocpo MM,
= by (1—cg)
Q(c,T)=— . (35)
pDy, (170)

Here we have introduced the parameter, defined in Eq. (35)
because when using the approximation of a light background
gas (M, <<M,), it is only a slight function of temperature.
Thus, we have A—\;, M—M,/(1—c) (see Table II),

O (kpTre;) QUD(kgTole )
QZ(kpTole,)) QPP (kpTle,)

~1 at MI/Mz"‘)O

Q(c.T)—

(36)
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TABLE II. Thermophysical properties of helium, hydrogen, and r-pentanol
and their mixtures.

Helium

M, =4.0026X 10" kg/mol
o=2. 551><10“°m, e“/k3=10.22K

cp1—5R 2M, Tkg 'K

A =2.451 08X 1072+ 1.124 6X 10737 —2.931 23X 107 °X T2
+4.496 46X 109X T3—2.51948X 10" X T* Wm ™ K™!

Hydrogen

=2.016X 1072 kg/mol
0,=2.827%x10"¥m, &,,/kp=59.7K
cp=3444R, IM Tkg 'K !
A =418.68(5.468 234X 107°+2.137 513x 10™°
XT—1.697643X107°XTH) Wm™' K™

n-pentanol

M,=88.15X 10" kg mol !

0> =6.667X10""m, g5 /kz=304.1K

cpr=(3.8686+0.504 51T —2.6394 X 107*
XTI+5.12X 107 X T73)/M, Tkg ' K™!

pr=270+10%(1.930 229X Z'— 8.414 762X Z**+19.226 001X Z
—18.559 303X Z¥3+ 6.555 718X Z%?) I mol ' K™/,
where Z=1-T/T,,T,=588.15K

7 (26.854 69— 0.078 89X (T—273.15)) X 103 Nm ™’
=133.22X exp(90 079 043—9 788.384/T— 9. 9>< log D

)\2—1 88X 1072—9.068X 107X T+2.456X 10™ ' X T2

Mixture

0'12=(01+0'2)/2’812:\/E
cp=(1=c)-cpytc-cp
Va,,=(—0.7272—-T/(16.36—0.288 2T))
X ((1—c)M/M+0.122 81) +0.089 303 (hetium)
a,=0.3 (hydrogen)
pD ,=3MR,T(M,+M)/(27M, M2)1(8NA0|20“”(T*))
)\ M(L=c)(1~c+cALM IMy)  H hye(c+(1—c)AyM, IMy) !
=[N /N ) ML I ML) PP (8CL+ M, ML) ]2
)\”n/)\[rm:(Mll’l 29(22)(T* ))/(Mllz 2Q(22)(T* Y,n,m=12
Q“’J)(T:m)—A /(T* Yo+ Cyj lexp(DyT,) + Ey; lexp(Fy/Tr,)
/CXP(HU nm)
T:‘m=(kBT/anm)e[03 100], A;;=1.060 36, B,;=0.156 10,
C,=0.193 00, D,;=0.476 35,
E;1=1.03587, F,,=1.52996, G,,=1.76474, H|,=3.894 11,
A,,=1.16145, B5,=0.148 74
C»=0.524 87, D,=0.773 20, E);=2.16178, F»,=2.437 87,
Gp=Hy;=0

A solution of Eq. (35) may be obtained using the method of
consequent approximations (the solution in the Nth approxi-
mation is designated by up-index ‘‘N”’) and is given as
1-¢ 0
1+AMFY -

N)
C( )= G(~N)’
T

AM=((c;—c)(1=c))+CMYVFNM, N=123,...,

W_ T 7 m— | e 7
F3 Jl f™IT, FY fl FfNAT,

(N-1)
1+Le, ' AN-D.B(cN-D Ty’

Anisimov et al.

T — T _
Gg_fv):ﬁ g(N)dT’ G(TN):f1 g(N)dT’

¢ —cp)

(N)za(N—l) .
T(1—c?™ 1)

g

Equation (37) contains an unknown integration constant,
A© and also functions, F(O) G(O) F(O) G(O) present in the
Zero approximation. Usually experlments in the static diffu-
sion chamber are carried out using a light background gas
(e.g., helium). When the molecular weight of the background
gas is much smaller than the molecular weight of the vapor
(e.g., M, <M,) and the vapor mass fraction is not close to
unitity (e.g., approximately ¢<<1/2) then the value of @(c)
in Eq. (35) may be taken as Q(c)=1. Thus, using the ap-
proximation of a light background gas and neglecting ther-
mal diffusion (e.g., @1,=0), Eq. (33) for the boundary con-
ditions given in Egs. (20) and (21) assumes the simpler form,

d 1—c0) = AT (38)
dT\ 1—c 1+LeglzP2A<°>(1—T)
The solution to Eq. (38) can be written as
Le g% |\ 7!
O=1—(1=cg)| 1= ==In| 1 +AO(1 = T) ==
=1~ Co)( i 1+ACU-T)
Leo 59)2 C()—cl
A<0>=————( (— -1, 39
-0\ P Le T-cy (39)

Thus, the system of simplified equations in (39) gives a so-
lution to the transport in the SDC which does not account for
thermal diffusion and applies for relatively small vapor mass
fractions in a binary mixture. Equations (37) give the
N-order iteration solution (N=2,3.,4,...). This solution
takes into account thermal diffusion and large vapor mass
fractions. To evaluate any of these equations, appropriate
values for the gas and vapor properties are needed, e.g., the
molar weight (M, and M,), the force constants for the
Lennard-Jones (6-12) potential (oj,e; and 0,,£,), the
thermal diffusion factor (a,), and the specific (or molar)
heat capacity at constant pressure (cp; and ¢ p;).

VI. RESULTS

In order to investigate the difference between the two
approaches for describing mass and energy transport in the
SDC, namely, assuming a zero or a nNonzero mass average
velocity at the system boundaries we calculate values of va-
por supersaturations based on the experimental n-pentanol
nucleation results reported by Rudek et al.* The vapor super-
saturations correspond to the maximum of the theoretical
nucleation rate as calculated using the classical (BDZ) nucle-
ation theory,

Vl 2'}’ 2 2
Jtheor_(kBT)Z V7T-m P (T)

- exp(— 167 y*- VI3(kpT)3- (In S)?), (40)

B
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FIG. 1. Nucleation rates, J, vapor supersaturation, S, of
n-pentanol in helium [Rudek (Ref. 4)] and the same
data analyzed using the present research assumptions.
Solid lines are predictions calculated using Eq. (41)
with a Tolman factor of 0.4X 107'® m for surface ten-
sion.
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where y and V, are the surface tension and volume per mol-
ecule in the liquid phase, respectively; S and Po(T) are the
vapor supersaturation ratio (or vapor activity) and equilib-
rium pressure, respectively; T is the nucleation temperature;
and kg is the Boltzmann constant. The thermophysical con-
stants for n-pentanol and helium and their mixtures used in
our analysis are, essentially, the same as used by Rudek
et al.* and are shown in Table II.

The results of our calculations are shown in Fig. 1. In
this figure we plot the measured nucleation rate as a function
of the calculated supersaturation at four different nucleation
temperatures. The solid symbols represent data as reported
by Rudek et al. and the open symbols are the corresponding
data analyzed using the method we describe above. As seen
in the figure there is a significant difference in the calculated
supersaturation for all of the data. The magnitude of this
difference is quite large even for the relatively small vapor
mass fractions at a nucleation temperature of 260 K. We also
note that the calculated nucleation temperatures from our
analysis are slightly larger than those reported in Rudek
et al.* We performed our calculations with and without the
thermal diffusion term. We observed that the effect of ther-
mal diffusion on the transport process is small and is not
particularly essential to include in this comparison we are
making of the effects of the different flux boundary condi-
tions.

In order to compare the results of our analysis with
n-pentanol nucleation rate data obtained earlier using a flow
diffusion chamber,” we utilized an expression for the nucle-
ation rate fitted to the measured nucleation rate data that
accounted for both temperature and total pressure.’ In that
expression the pressure effect is taken in to account as

; B \% 20 P2 167 o2 V2
e "2 N om0 P T 30e) 3 (In 5)?
ZB Ptot“PaLm
(1o "), “n

where P, is total pressure and the fitting parameter, B, is
expressed as B=1.486- Ti, where T,=T/T, is the reduced
temperature; T, is critical temperature of n-pentanol and
equals 588.15 K.

The fitting equation is based on the classical nucleation
Eq. (40) with a Tolman factor for the size dependence of the
surface tension as y=y,— 6R,Tp,;InS/M,. The fitting pa-
rameter, 8, equals to 0.4 A in this case. These calculations
are shown in Fig. 1 as solid lines.

VIIl. CONCLUSIONS

To describe the heat and mass transfer in the SDC, we
apply the Navier—Stokes equations for a system with the
axial symmetry and stationary vapor flow in the chamber
axial direction. The heat and mass transfer equations in vec-
tor form are written and solved for the vapor flow boundary
conditions. From our results one can see that there is a sig-
nificant difference in the calculated vapor supersaturation for
the SDC data. The magnitude of this difference is quite large
even for the relatively small vapor mass fractions. We also
note that the calculated nucleation temperatures from our
analysis are slightly larger than usually reported. We per-
formed our calculations with and without the thermal diffu-
sion term. We observed that the effect of thermal diffusion
on the transport process is relatively small and is not particu-
larly essential to include in this comparison we are making
of the effects of the different flux boundary conditions
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APPENDIX

The full system of mass and heat transport equations
vector form (see Refs. 9 and 10) is given as

L
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(1) Mass balance for a nonreaction binary system (continu-
ity equation),
V-(pv)=0, (A1)
where p is the density of the mix, and v is a vector of
mass average (hydrodynamic) velocity.

(2) Mass balance (continuity equation) for a vapor (2nd
component),
pv-Ve,tdiv],=0. (A2)
Here, c,=m,n,/p is the mass concentration of the sec-
ond component (¢y+c,=1); Jo=myn,V, is the vector
for the mass diffusion flux of the second component
(J;+J,=0); and V is the differential operator. Here
m,, n,, and V, are molecule mass, number of mol-
ecules per unit of volume, and diffusion velocity of sec-
ond component, respectively.12

(3) Equation of motion,
p(v-V)v=2 Div(uS) — V(p+(2/3)u div(v)) + pg,

A3)
where g is the acceleration of gravity, p is pressure, u is
the dynamic viscosity, and S is the deformation rate ten-
sor.

(4) Energy transport equation,

p(vVR)=v-Vp+2u(8)?—(2/3) u(div’ v)—div(q),
(Ad)

where & is the specific enthalpy of the binary mix, and q is
the energy flux vector (heat flux). The diffusion mass flux for
eachcomponent of the binary system is expressed as

Ji=—J,=mm;Dy(dy—kr;V In T)n’/p,

d,=—V(ny/n)+(ny/n—nym,/p)Vin(p), (45)

where D, is binary diffusivity, k7 is the thermo-diffusion
relation, defined through the integrals, Q("9* and calculated
on the basis of the Lennard-Jones potential. It is defined thus
that the first-component transfers from the hot region to the
cold for k>0 and transfers from the cold region to the hot
for k;1<O (kg = —kgy). Considering that ¢;+c,=1, ex-
pression (A5) can be written as

d, = co(MHM M) (ViIn(cy)+(1=cr)(M;—M)IM
- Vin(p)),
Ji=—J=cy p-D1a| Vin(cy)

MM,
e

M| —M,
+(1—C2)T

kro
Vin(p)+ - ViIn(T)].
2

(A6)

Anisimov et al.

The heat flux can be expressed in the first approximation as

kT &, nDY
> (V,i—V)).

n j=1 miDij

2
q=—\VT+ >, hJ+
i=1

Representing the diffusion velocity using mass flux expres-
sions, the heat flux may be rewritten as

kr, RT

- o) (A7)

In a cylindrically symmetrically (8/d¢=0) system,
(x1,%x2,%3)=(r,¢,7), divergences of the deformation rate
tensor and the velocity are presented by Eqgs. (A8) and (A9),
respectively,

. 14 F
(DIV(S))rZ; 'éTr(rSrr)+ a_z'(szr)’

(A8)
‘ 14 2
(Div(8)), =~ E(rsrz) + E(S“)’
_dv —g _Ifév, v,
g PR or Jz |’
_9Ur o 2 2 2
Szz—a—z(s —(Srr) +2(Srz) +(Szz) )9 (A9)

_ 10 F
d1V(V)=7:97(rv)+—éz(u), (u=v,, v=,).
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