583 research outputs found

    Some results and problems for anisotropic random walks on the plane

    Get PDF
    This is an expository paper on the asymptotic results concerning path behaviour of the anisotropic random walk on the two-dimensional square lattice Z^2. In recent years Mikl\'os and the authors of the present paper investigated the properties of this random walk concerning strong approximations, local times and range. We give a survey of these results together with some further problems.Comment: 20 page

    New Confining N=1 Supersymmetric Gauge Theories

    Get PDF
    We examine N=1 supersymmetric gauge theories which confine in the presence of a tree-level superpotential. We show the confining spectra which satisfy the 't Hooft anomaly matching conditions and give a simple method to find the confining superpotential. Using this method we fix the confining superpotentials in the simplest cases, and show how these superpotentials are generated by multi-instanton effects in the dual theory. These new type of confining theories may be useful for model building, since the size of the matter content is not restricted by an index constraint. Therefore, one expects that a large variety of new confining spectra can be obtained using such models.Comment: 26 pages, LaTe

    AN ENGINEERING METHOD FOR PROCESS IDENTIFICATION

    Get PDF

    ASYNCHRONOUS RUNNING OF TURBO-ALTERNATORS

    Get PDF

    Gauge-Higgs Unification in Orbifold Models

    Get PDF
    Six-dimensional orbifold models where the Higgs field is identified with some internal component of a gauge field are considered. We classify all possible T^2/Z_N orbifold constructions based on a SU(3) electroweak gauge symmetry. Depending on the orbifold twist, models with two, one or zero Higgs doublets can be obtained. Models with one Higgs doublet are particularly interesting because they lead to a prediction for the Higgs mass, which is twice the W boson mass at leading order: m_H=2 m_W. The electroweak scale is quadratically sensitive to the cut-off, but only through very specific localized operators. We study in detail the structure of these operators at one loop, and identify a class of models where they do not destabilize the electroweak scale at the leading order. This provides a very promising framework to construct realistic and predictive models of electroweak symmetry breaking.Comment: 27 pages, uses axodraw.sty; v2: version to appear in JHE

    The shortest cut in brane cosmology

    Get PDF
    We consider brane cosmology studying the shortest null path on the brane for photons, and in the bulk for gravitons. We derive the differential equation for the shortest path in the bulk for a 1+4 cosmological metric. The time cost and the redshifts for photons and gravitons after traveling their respective path are compared. We consider some numerical solutions of the shortest path equation, and show that there is no shortest path in the bulk for the Randall-Sundrum vacuum brane solution, the linear cosmological solution of Bin\'etruy, et al for ω=1,2/3\omega = -1, -{2/3}, and for some expanding brane universes.Comment: 20 pages, 7 figure

    Comment on 4D Lorentz invariance violations in the brane-world

    Get PDF
    The brane-world scenario offers the possibility for signals to travel outside our visible universe and reenter it. We find the condition for a signal emitted from the brane to return to the brane. We study the propagation of such signals and show that, as seen by a 4D observer, these signals arrive earlier than light traveling along the brane. We also study the horizon problem and find that, while the bulk signals can travel far enough to homogenize the visible universe, it is unlikely that they have a significant effect since they are redshifted in the gravitational field of the bulk black hole.Comment: 21 pages, 6 figures, REVTEX, New section adde

    N=1 Supersymmetric Product Group Theories in the Coulomb Phase

    Get PDF
    We study the low-energy behavior of N=1 supersymmetric gauge theories with product gauge groups SU(N)^M and M chiral superfields transforming in the fundamental representation of two of the SU(N) factors. These theories are in the Coulomb phase with an unbroken U(1)^(N-1) gauge group. For N >= 3, M >= 3 the theories are chiral. The low-energy gauge kinetic functions can be obtained from hyperelliptic curves which we derive by considering various limits of the theories. We present several consistency checks of the curves including confinement through the addition of mass perturbations and other limits.Comment: 22 pages, LaTeX, minor changes. Eqs. (20) and (42) correcte

    Quality of functional movement patterns and injury examination in elite-level male professional football players

    Get PDF
    The purpose of this study is to examine the quality of functional movement patterns among one of Hungary’s first league soccer clubs, where the elite male football players (N = 20) utilize the well-established Functional Movement Screen™ (FMS) system; a comprehensive functional program designed to determine and identify the quality of movement and the greatest risk factors for non-contact injuries. Furthermore, an additional purpose of this program is to examine injuries over the course of 6 competitive months. Focusing on the mechanisms of injuries and their causes in the lower extremities during this period is one of the key objectives. Over the course of 6 months we found significant differences between ankle injuries and the FMS Hurdle Step exercise (p < 0.05), and the FMS Deep Squat exercise and knee and hip injuries (p < 0.05). The FMS pre-screening system found lower limb asymmetry present in 40% of the participants. The authors believe that the importance of preventative measures and structural sport specific pre-screening cannot be overemphasized, and that there is a growing need for further transparent research in this field in order to be more effective with regard to programs dedicated to injury prevention and the enhancement players’ physical performance

    Seiberg-Witten Description of the Deconstructed 6D (0,2) Theory

    Full text link
    It has recently been suggested that, in a large N limit, a particular four dimensional gauge theory is indistinguishable from the six dimensional CFT with (0,2) supersymmetry compactified on a torus. We give further evidence for this correspondence by studying the Seiberg-Witten curve for the "deconstructed" theory and demonstrating that along the reduced Coulomb branch of moduli space (on the intersection of the Higgs and Coulomb branches) it describes the low energy physics on a stack of M5-branes on a torus, which is the (0,2) theory on a torus as claimed. The M-theory construction helps to clarify the enhancement of supersymmetry in the deconstructed theory at low energies, and demonstrates its stability to radiative and instanton corrections. We demonstrate the role of the theta vacuum in the deconstructed theory. We point out that by varying the theta parameters and gauge couplings in the deconstructed theory, the complex structure of the torus can be chosen arbitrarily, and the torus is not metrically S^1 x S^1 in general.Comment: 13 pages, 2 figure
    corecore