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Abstract This is an expository paper on the asymptotic results caongrpath
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1 Introduction

We consider random walks on the square lat#Zewith possibly unequal sym-
metric horizontal and vertical step probabilities, so ttese probabilities can
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only depend on the value of the vertical coordinate. In paldr, if such a ran-
dom walk is situated at a site on the horizontal line- j € Z, then at the next
step it moves with probability; to either vertical neighbor, and with probability
1/2— p; to either horizontal neighbor. More formally, consider taadom walk
{C(N) = (C1(N),C2(N)); N=0,1,2,...} onZ? with the transition probabilities

P(CIN+1) = (k+1,))[C(N) = (k)
=P(CN+1)=(k=1,))IC(N) = (k })) = 5 — Pj,

P(CIN+1) = (k,j+1)IC(N) = (k)
=P(C(N+1) = (kj—1IC(N) = (k |)) = pj; (1.1)

NI =

for (k, j) € Z2,N=0,1,2,... We assume throughout the paper that p; < 1/2 and
minjcz pj < 1/2. Unless otherwise stated we assume also@{@j = (0,0). This
model has a nhumber of physical applications and the topiaha®ad literature.
We refer to Silveeet al.[28], Seshadrét al.[26], Shuler [27], Westcott [30], where
certain properties of this random walk were studied undeoua conditions. Heyde
[14] proved an almost sure approximation @x(-) under the condition

i =2y+o(n "), i =2y+o(n~ ") (1.2)

asn — oo for some constantg 1 <y <owand 1/2<n < co.

Heydeet al.[16] treated the case when conditions similar to (1.2) asam&d but
y can be different for the two parts of (1.2) and obtained atraoee convergence to
the so-called oscillating Brownian motion. In Heyde [15jifing distributions were
given forC(-) under the condition (1.2) but without remainder. Den Hall@n[12]
proved strong approximations fax(-) in the case whep;-s are random variables
with values ¥4 and ¥2. Roerdink and Shuler [25] proved some asymptotic prop-
erties, including local limit theorems, under certain ctinds. For more detailed
history see [12].

First we give a general construction and discuss the isstecafrence and tran-
sience of this random walk. In Section 2 we discuss strongaipations of the
random walk{C(N), N =0,1,...}. Section 3 treats the local time and in Section 4
some results on the range will be given.

1.1 General construction

Suppose that in a probability space we have two independapies symmetric
random walks, i.e.,

Sl(n)’n:O’l’Z""’ Sz(n)7n:071727"'7
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whereS; (0) = $(0) = 0, S(-) are sums of i.i.d. random variables each taking the
values 1 and-1 with probability /2. The local times o§ are defined by

&(j,n)=#H0o<k<n:Sk) =j}, jez n=0,12,...

Moreover, on the same probability space we have a doublg afiadependent
geometric random variables

cVi=12..,jez

with distribution

PG = k) = 2pj(1—2pj), k=0,1,2,...

We now construct our wal€(N) as follows. We will take all the horizontal steps
consecutively fron; () and all the vertical steps consecutively fr@x(-). First
we will take some horizontal steps frof(-), then exactly one vertical step from
S(+), then again some horizontal steps fr&a(-) and exactly one vertical step from
S(+), and so on. Now we explain how to get the number of horizonégisson each
occasion. Consider our walk starting from the origin praiieg first horizontally
G<1°) steps (note tha(E(lo) = 0 is possible with probability @), after which it takes
exactly one vertical step, arriving either to the level 1k, where it take:G(ll)
or Gfl) horizontal steps (which might be no steps at all) before geding with

another vertical step. If this step carries the walk to tiellg¢, then it will takeG(lj)
horizontal steps, if this is the first visit to levgl otherwise it takeSB(ZJ) horizontal
steps. In general, if we finished theth vertical step and arrived to the leviefor
thei-th time, then it will takeG\!) horizontal steps.

In this papem will denote the number of steps of the walk out of whidR
denotes the number of horizontal steps ®k&= nthe number of vertical steps, i.e.,
Hn +Vn = N. Then clearly

C(N) = (C2(N),C2(N)) = (S1(HN), S2(W))-

1.2 Recurrence, transience

Our result on recurrence is a simple application of the cateld Nash-Williams
theorem [21]. To state this result we need some definitiosis@er a Markov
chain(X,Y, p) with countable state spa¢g processy and transition probabilities
p(u,v). The chain is reversible if there exist strictly positive gleisg, for all u € X
such that

p(u,v) = 15 p(V,u). (1.3)
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If the chain is reversible we will use
a(U,V) = T[Jp(uvv)'

Obviously the above defined anisotropic walk is a Markov chai the state
spaceX = Z2, with the transition probabilities defined in (1.1). Furtimere, this
Markov chain is reversible with the strictly positive weigh

1

T[(kvj) = p_J

and

a((k7 J)a (ka J + 1)) = a((k7 J)a (ka J - 1)) =1
. . . . 1
a((kvj)a(k+1vj)) :a((k,J),(k—Lj)):%—l (14)
i
(and for non nearest neighbor si&s,.) = 0). This Markov chain is also time ho-
mogeneous, irreducible, i.e. it is possible to get to antestieom any state with
positive probability. The invariant measure is given by

u&DﬂWﬁ=%7Wﬁe%7 (1.5)

B = H(V)p(V.U),

Y
where the summation goes for the four nearest neighbars of
Theorem A (Nash-Williams [21]):Suppose thatX,Y, p) is a reversible Markov
chain and thaiX = Jg_,AK whereAK are disjoint. Suppose further thate AX and
a(u,v) > 0 together imply that € Ak-1JAKJAKHL and that for each k the sum
Z a(u,v) < . Let[AK AXT1] denote the set of pair@i,v) such thatu € AX
uenkvex

andv € Akl The Markov chain is recurrent if

-1
a(u,v) =, (1.6)
kZO ((u,v)e[/\Z,/\kH] )

To apply this theorem, leAK be the set of Blattice points on the square of width
2k, centered at the origin. Furthermore, J&&, AX*1] be the set of B+ 4 nearest
neighbor pairs (edges) betweak andAK+1,

It is easy to see by (1.4) that the sum in (1.6) is equal to

(560 2) 2(22)”
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So we got the following result.

Theorem 1.1 The anisotropic walk is recurrent if

o [k 1\ "
= = o0. 1.7
kZO <jzk pJ) ¢

As a simple consequence, if miz, p; > 0, then the anisotropic walk is recurrent.
It is an intriguing question whether the converse of thitesteent is true as well.
That is to say, is it true that

o [k 1\ "
1 , 1.8
kZO (jzk pj) - (-8)

then the anisotropic walk is transient.

Conjecture 1.1 If

We can't prove this conjecture, but a somewhat weaker restilie.

Theorem 1.2 Assume that

k
1 kg O(KHA%) k= (1.9)
=k pj

forsome C> 0, A> 0and0 < é < 1. Then the anisotropic random walk is transient.

Proof. Consider the simple symmetric random walK-) of the vertical steps and let
&(+,-) beits local time, angy(+) be its return time to zero. Consider the anisotropic
random walk ol steps, wher&l = N(m) is the time ofm-th return ofS;(+) to zero,
i.e., letVy = pa(m).

First we give a lower bound for the number of the horizontpsHy.

Lemma 1. For small enougle > 0 we have almost surely for large enough m
Hn = Hyy(m) > mtt - 8AT), (1.10)

Proof. For simplicity in the proof, we denot® by £ andp, by p. From the con-
struction in Section 1.1 it can be seen that the number ofbotél steps up to the
m-th return to zero by the vertical component is given by

0

fpm)
Hy = G,
U2 ¢

WhereGij are as in Section 1.1. Sinpgm) > m?~¢ for smalle > 0 and large enough
malmost surely, it follows from the stability of local timegg[23], Theorem 11.22,
p. 127), that for ang > 0, |j| < m'—¢ we have
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(1—e)m< &(j,p(m) < (1+&)m

almost surely for large enough Hence

(1—&)m i)
Hn > G =Un.
\H;H i;

We consider the expectationdf, and show that the other terms are negligible. We
have

EGi(J) — Pj ,
2p;
() _1-2p
Var = .
Hence by (1.9) we get
EUn=m(1—¢) 1720 o ra-e)ad),
il 2P

wherec > 0 is a constant. In what follows the value of suchmight change from
line to line. We have
1- ij
VarUp=m(1—¢) —
m_%lff 4p)

It follows from (1.9) thatz—‘lJj < ¢|j|*A9, hence

|j|l+A76

VarUp <cm(1l—¢) < cmi+(1-8)(2+2A-8)

jidmee P
By Chebyshev inequality

mit2A-2e(14+A)—(1-€)d

1-¢)(A+2 _ —1—(1—€)0+2¢
P(JUmn—EUp| > m(3-)( )) <c A =cm (19

which, by choosing small enough, is summable. Hencepas» o,
Um = EUp+O(m-8)(A+2)y a5
consequently
Hy > Uy, > et (1-8)(1+A)
almost surely for largen. O

Lemma 2. Let §-) be a simple symmetric random walk and lghj be a sequence
of integer valued random variables independent 6j &nd such that (m) > m?
almost surely for large m witf > 2. Then with small enough> 0 we have



Anisotropic random walk 7
|S(r(m))| > mP/z 1
almost surely for large m.

Proof. From the local central limit theorem
c
P(Sk) =)< —
(Sk=1)<

for allk > 0 andj € Z with an absolute constant> 0. Hence
k .
P('S(—\/_Ngx): > Pk =j)<cx
k ljl<xvk

This remains true ik is replaced by a random variable, independens(ef, e.g.
k=r(m), i.e. we have

|S(r(m))| 1 1
P( Jrm) < ml+e> S G

consequently by Borel-Cantelli Lemma

sy = Y e

ml+£

almost surely for all large enough This completes the proof of the Lemnia.
Applying the two lemmas with(m) = Hyy), we get

|Sl(HN)| > n.ﬁ/ZfaA/273£/2 .

with y > 0 by choosings > 0 small enough. It follows that for largd, S;(Hy)
almost surely can’t be equal to zero.
Let

An = {3],p2(m) < j <p2(m+1) suchthat C(j)=(0,0)}.

Clearly Am could only happen if fronpz(m) to pp(m+ 1) the walk only steps hori-
zontally (if it makes one vertical step the return to the wrigpuld only happen after
or atp,(m+ 1)). Thus by our lemmas in order thag, could happen, the walk needs
to have at leash¥ consecutive steps on theaxis, thus

[ee]

> P(Am) <

m

(1/2— po)™ < o.

3M 8

So the anisotropic random walk cannot return to zero infiniiéen with probabil-
ity 1, it is transient. This proves the theorem.
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2 Strong approximations

In this section we present results concerning strong apmations of the two-
dimensional anisotropic random walks. Of course, the tesare different in the
various cases, and in some cases the problem is open. We afgmmweak con-
vergence results available in the literature. First we dies¢he general method how
to obtain these strong approximations.

Assume that our anisotropic random walk is constructed anlagbility space as
described in Section 1.1, and in accordance with Theoreinarél 10.1 of Révész
[23] we may assume that on the same probability space therdso two indepen-
dent standard Wiener processes (Brownian motiéh&), i = 1,2 with local times
ni(-,-) such that for ale > 0, asn — «, we have

S(n) =W (n)+O(nY4*¢)  as.

and
&(j,n) = ni(j,n)+O(nY*¢)  as
Then
C1(N) = Si(Hn) = Wi (Hn) +O(HY ") as,
and

Co(N) = S(Vn) = Wa(Ww) + OV *"8)  as,

if Hy — o andVy — o asN — o, almost surely.
So we have to give reasonable approximatiortdyandVy, or at least to one of
them, and us&y + Hn = N.
It turned out that in many cases treated, the following is@dggpproximation of
Hn.
&(jn) 1—2pj

REDIDRE D L

with n = Vy. Hy and the double sum above are not necessarily equal, sintzsthe
geometric variable might be truncatedHiy. So we have to investigate the additive
functional

AR = 5 ()&l = kiowsz(k)), 1) = 5

of the vertical component and approximate it by the addftivetional ofWs(+)
o0 t
B(O) = [ _f(ona(xt)ax= [ f(W(s))ds
where between integers we defifix) = f(j), j <x<j+1.

In certain cases the following Lemma, equivalent to Lemn3a02 Horvath [17],
giving strong approximation of additive functionals, magyuseful.
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Lemma A Let gt) be a non-negative function such thdtg=g(j), j <t < j+1,
for j € Z and assume that() < c(|t|® + 1) for some0 < ¢ andB > 0. Then

. S (i) — Wh(s))ds = o(nf/2+3/4+8) ag
|3, 9S00~ [ aWe(s)ds =ofn ) as

N
0
as n— o,
Now let us introduce the notations

=~

k
() =bo 3 1) =c
=

1

J

The next assumption is a reasonable one used in the literatsit — oo
b = (y— 1)k” + o(k?~9) (2.1)

o= (y—1)k% +0o(k?~9%) (2.2)

with somey > 1,a > 0 andd > 0. Observe that (1.2) is a particular case vaith- 1.
We consider the following cases:
1)a=0
2)0<ax<1
BR)a=1
@Aa>1
(5) nonsymmetric case, i.e. the constanis (2.1) and (2.2) are different.

2.1 Thecasea =0

The most interesting and well established case is the $edoadmb structure, i.e.,
po=1/4,p;=1/2, j==£1,£2,.... It follows from Theorem 1.1 that the random
walk in this case is recurrent. We note in passing the intieiggeesult of Krishnapur-
Peres [19]: two independent random walks on the comb megfiaitely often with
probability 1.

For random walk on comb we refer to Weiss and Havlin [29], 8ezhi and
Zucca [2] and references given there. The following resnltv@ak convergence
was established by Bertacchi [1].

Theorem B
C1(Nt) Co(Nt L
( i, ;(1/2);tzo)ﬂ%(wl(nz(o,t)),w&(t):tzox N o

Strong approximation was given in Csditial. [5].

Theorem 2.1 On an appropriate probability space we have
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N=4C(N) —Wa(12(0,N))[ + NY2|Co(N) —Wh(N)| = O(N~V/8)  as,

as N— oo,

We have the following consequences.

Corollary 1.
, Ci(N) _
||W53p25/43*3/4N1/4(Iog logN)3/4 1 as
limsup C(N) =1 as

Now (2NloglogN)1/2

For general results in the cage= 0 we just remark that in this cage= 3 ; f(j)
is convergent, then by our assumptions its terms are noativegand at least one
of them is strictly positive, hencé > 0. By the ratio ergodic theorem (cf., e.g.,
Theorem 3.6 in Revuz [24])

Am) ~ F&(0,n), =3 f(j)=2(y—1)+f(0),

]
almost surely, am — o, hence

A(n) = O((nloglogn)*/?) as., n— oo.

Let
&(jn &2(j,m—-1

) |
Hy = GV, Hy = G,
ST S &

J

Obviously,Hy < Hn < Hy. ConsideiHy}, which is a (random) sum of independent
random variables. Under the conditioh = {S;(k), k > 0} we have

E(H{17) = 3 &0 = Al

F) ¢
+| g\ — _\JJ
Var(Hg|.7) = 3 5, &l
Itis easy to see that the sup f(j)/2p; is also convergent, hence
Var(Hy|.7) ~c£(0,n)

with somec > 0. Now apply Theorem 6.17 in Petrov [22] saying that for surhs o
independent (not necessary identically distributed) oamgariables we have

pe-genee{(p) )
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almost surely. Thus
Hy = F&(0,n)(1+0(1)) = f&(0,W)(1+0(1))
almost surely adl — oo, Similar results are true fdd, hence also foHy, i.e.
Hy = f&(0,n)(1+0(1)) = F&(0,W)(1+0(1)).
SinceCy(N) = Sy(Hn), using thatHy = O((NloglogN)¥/2) and the strong ap-

proximations ofS;(+), S(+) by W4 (+),Wa(-) andé&»(0,-) by n2(-), we can obtain the
following limit distribution: asN — oo,

(S-S0 ) wa(Fna(0.0) wa(w).

Further results, like strong approximations, remain tostaldished in this case.

22 ThecaseO< a <1

This is also a recurrent case, but approximations, limibtams, etc. remain to be
worked out in detail. We just note that from the law of theated logarithm for the
local time we have

A(n) = f(j)&(j,n) < c(nloglogn)** /2,
]

a.s.,n — oo, hence the vertical part dominates, i.e.Nas» o we should have
Hn = O((NloglogN)**/2) << N as,

and we expect that
C1(N) =WA(Z(N)) + O(NF)/4H) a5,

where

and for the vertical component
C2(N) =Wo(N) +O(NY278) as

asN — oo,
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2.3 Thecasea =1

Assume also thad > 1/2,y > 1.

It can be seen from Thoerem 1.1 that the anisotropic randdkniwéhis case is
recurrent.

Heyde [14] gave the following strong approximation:
Theorem C On an appropriate probability space we have

Y2Co(N) = Wa(N(1+ en)) + O(NY4(logN)Y?(loglogN)¥/?)  a.s.

as N— o, where W) is a standard Wiener process aliohn_,. ey =0 a.s.
In another paper Heyde [15] gave weak convergence resofircoordinates.

Theorem D

Ci(N) C(N)Y d ~1 ~1
( N2 N2 ) T (Wi(1-y ). We(y ).
Strong approximation result for both coordinates was ginebsakiet al. [9]:
Theorem 2.2 On an appropriate probability space we have for any 0

O R

as N— oo,
Moreover, in the periodic case, when$ pj; foreach je Z and a fixed integer
L > 1we have

\c:l(N) W ((VT”N> \ i ‘Cz(N) W <$>} —ONV4) as,

as N— oo, where
L-1,.,-1

2j=0Pj
;=m0
Some consequences are the following laws of the iterateatithgn.

. Ci(N) 2(y-1)\"?
| - s
e (NloglogN)172 ( y *S

limsu &7 2 e as
Noe (NloglogN)2 — \y -

24 Thecasea > 1

In this case the random walk is transient by Theorem 1.2.
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It is an open problem to give strong approximations in thisecalorvéth [17]
established weak convergence@®f-) to some time changed Wiener process. We
mention a particular case of his results, valid foratb 1.

Let

't
lo(t) = | Me(s)* ds
|4 is strictly increasing, so we can define its inverse, denbye#},. Then we have

CZ(NI) Law

NU(Tra) CoWo(Ja (1))

with some constarty.
In this case the number of horizontal steps dominates thebauwf vertical
steps, therefor€; (N) might be approximated by (N).

2.5 Unsymmetric case

Some weak convergence in this case was treated in Helyale[16] and Horvath
[17]. Strong approximation in a particular case, the sdéeddhalf-plane half-comb
structure (HPHC) was given in Csékd al. [8].
Letpj=1/4,j=0,1,2,...andp;j=1/2,j =—1,-2,...,i.e.,asquare lattice on
the upper half-plane, and a comb structure on the lower teatiep Let furthermore

t
ar(t) = /0 | \Wa(s) > 0} ds

i.e., the time spent bW\, on the non-negative side during the inter{@lt]. The
processys(t) := ao(t) +t is strictly increasing, hence we can define its inverse:

Ba(t) == (va(t)) ™.
Theorem 2.3 On an appropriate probability space we have
IC1(N) = WA (N = Bo(N))| + [C2(N) = Wa(B(N))| = O(N¥®%)  as,

as N— oo,
The following laws of the iterated logarithm hold:

Corollary 2.
. Wl(t 7[3'2('[)) o Cl(N) -
“TLSWUp tloglogt |Ir’\?jol;lp NloglogN 1 as,
o Wi (t—Ba(t) L Ci(N)
| f————" = f————=-1 as
e /tloglogt e v/NloglogN as,
IimsupM = Iimsup& =1 as,

tsw  /Toglogt Now +/NloglogN
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liminf Y2B2®) _ i (N —V2 as.

t—w 4/tloglogt N—e /NloglogN

3 Local time

We don’t know any general result about the local time of thisatropic walk. It
would require to determine asymptotic results or at leasdgestimations for the
return probabilities, i.e., we would need local limit theors. In fact, we know such
results in two cases: the periodic and the comb structue cas

3.1 Periodic anisotropic walk

In case of the periodic anisotropic walk, i.e., whgn= pj,., for some fixed integer
L>1andj=0,4+1,+2,... we know the following local limit theorem for the
random walk denoted b@"(-).

Lemma 1. As N— o, we have

1

P(CP(2N) = (0,0)) ~ a1

(3.1)

with y = 5+=5p;*/(2L).
The proof of this lemma is based on the work of Roerdink ande3Ha5]. It
follows from this lemma, that the truncated Green functi¢n is given by

logN
4porty/y—1’
which implies that our anisotropic random walk in this casedcurrent and also

Harris recurrent.
First, we define the local time by

N — oo

)

N
N) =S P(CP(k) = (0,0)) ~
g()k;(()( )

N
Z((k, )Ny =Y HCP(n) = (k, i)}, (k.j)eZ? 3.2)
r=1
In the case when the random walk is (Harris) recurrent, themave (cf. e.g. Chen

[4) o :
im =k 1) N) _ p(ka, ja)

= - . as,
N=—o =((k2, j2),N)  p(ke, j2)
wherep(-) is an invariant measure. Hence by (1.5)
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for (k, j) € 72 fixed.
Thus, using novg(N), it follows from Darling and Kac [11] that we have

Corollary 3.
lim P :((070)7N) >x| = lim P 4pO7Tv y— 1:((050)5N) > X 287X
N—s00 g(N) N—eo logN

for x> 0.

For a limsup result, via Chen [4] we conclude

Corollary 4.

o SOON) 1
NﬁwplogNlog loglogN  4porty/y—1

a.s.

3.2 Comb

Now we consider the case of the two-dimensional comb stractd, i.e., when
po=1/4andp; =1/2for j=+1,%2,...
First we give the return probability from Woess [31], p. 197:
21/2

PCEN) = (0.0) ~ g e N

This result indicates that the local time tipically is of erdN’/4. In Csékiet al.
[6] and [7] we have shown the following results.

Theorem 3.1 The limiting distribution of the local time is given by

lim P(Z((0,0),N)/N"* < x) = P(2n1(0,n2(0,1)) < X) = P(2U|/|V[ < x),

N—o00
where U and V are two independent standard normal randonates.

Concerning strong approximation, in Csdtial. [7] we proved the following
results.

Theorem 3.2 On an appropriate probability space for the random walk

{C(N) = (C1(N),C2(N));N=0,1,2,...} onC?, one can construct two independent
standard Wiener process€¥ (t); t > 0}, {Wx(t); t > 0} with their corresponding
local time processes; (-,-), N2(-,-) such that, as N- o, we have for any > 0

sup=((x,0),N) — 201 (x,n2(0,N))| = O(NY/%%) " as

XEZ
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The next result shows that on the backbone ufxfte N*/4~¢ we have unifor-
mity, all the sites have approximately the same local timda®rigin. Furthermore
if we consider a site on a tooth of the comb its local time isgtdy half of the
local time of the origin. This is pretty natural, as it turng érom the proof that on
the backbone the number of horizontal and vertical visitarty particular site are
approximately equal.

Theorem 3.3 On the probability space dfheorem 3.2as N— o, we have for any
0<e<l/4

max |=((x,0),N) — =((0,0),N)| = O(N¥/*-%) as

‘X‘SNl/A—e

and

max max |=((xy),N)— Z=((0,0),N)| = O(NY*9%) as,
0<\y\§N1/4*5\x\§N1/4*5| ((xy),N) = 5=((0,0),N)] = O( )

for any0 < d < €/2, where the maximum is taken on the integers.

It would be an interesting problem to investigate the logaktfor |y| > N/4,
We believe e.g. that the maximal local time taken fo(aly) € Z? is of orderN/2,
Such results however remain to be established.

One of our old results [10] describes the Strassen clasg @, n»(0,zt)) as
follows. This, combined with Theorems 3.2 and 3.3, allow$ausonclude the cor-
responding Strassen class result for the local times of tilke. w

Theorem 3.4 The net

n1(0,n2(0,2t))
0<z<1
{25/43 aT4(oglog)?/d - f Ly’

ast— o, is almost surely relatively compact in the spad¢lCl],R) of continuous
functions fron{0, 1] to R, and the set of its limit points is the class of nondecreasing
absolutely continuous functiofwith respect to the Lebesgue meadune|0, 1] for
which

1.
T {f(O) ~0 and/ 1 ()43 dx < 1} .
Jo
Some obvious consequences of these results are the fojowin

. n1(0,n2(0,t)) 254
* IIrtrLSOOUptl/“(IogIogt) 3ja — g 2%

o Z(ON) 2
* SljpNl/“(loglogN)3 T A &S

=((xy);N) 2%/
NZ/4(loglogN)3/4 ~ 33/4

. I|msup as.y#0.

A beautiful classical result of Lévy, P. [18] reads as folfow
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Theorem E LetW(-) be a standard Wiener process with local time proagés-).
The following equality in distribution holds

{n(0,t),t >0}2{ supW(s), t > 0}.
0<s<t
Consequently using a Hirsch type result of Bertoin [3], we ge

Corollary 5. Letf(t) > 0,t > 0, be a non-increasing function. Then we have almost
surely that
o0 t1/4B(t)

according as the integraf;” B(t) /tdt diverges or converges.

=0 or o

So we also have

Corollary 6. Let 3(n),n=1,2,... be a non-increasing sequence of positive num-
bers. Then, for any fixet, y) € Z?, we have almost surely that

e Sy
I|m2f W =0 or o
according as the serieg7 3(n)/n diverges or converges.

Now we also might consider the behavior of the supremum oltited time over
the backbone. To this end we first had to prove the followinig plintegral tests
for the sup.g N1(x,N2(0,t)) process.

Theorem 3.5 Let f(t) > 0 be a non-decreasing function and put

00 2
I(f) ::/1 fT(t)exp<%f4/3(t)> dt.

Then, as t— oo,

P(supni(x,n2(0,t)) > tY4f(t)i.o.)=0or 1

xeR
according as (f) converges or diverges.

Theorem 3.6 Let g(t) > 0 be a non-increasing function and

00 2
J(g) ::/l gdet.

Then, as t— oo,

P(supn1(x,n2(0,t)) <t¥4g(t)i.o.)=0or 1

xeR

according as whether(dj) converges or diverges.
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The above theorems imply the following integral tests fqusi = ((x,0),n);

Theorem 3.7 Let an) be a non-decreasing sequence. Then, as®,

P(sup=((x,0),n) > 2n*/*a(n)i.0.)=0or 1

XEZL

according as

® a(n) 3a%/3(n) B
nzl n &Pl 573 <0 Of =00,

Theorem 3.8 Let h(n) be a non-increasing sequence. Then, as v,

P(sup=((x,0),n) < n*b(n) i.0.) =0 or 1
XEZ
according as
< b*(n)
z <00 Or =oo,
=L

4 Range

The range of the anisotropic walk is defined in the usual way as

RN)= ¥ 1(Z((k).N) >0)
(k,j)€z2

i.e., the number of distinct sites visited by the random waglkto timeN, where
Z((k, j),N) is the local time of the pointk, j) at timeN.

We are not aware of any all embracing result about the rangfeecdnisotropic
walk in general. However the case of the periodic walk is cietey understood.

Recall that the walk is periodic ip; = pj,.L for eachj € Z, whereL > 1 is a
positive integer. In this case it is easy to see that

- Sizopt
2L
Roerdink and Shuler [25] gives the asymptotic expectedevafihe range:

2im/y—1 N

ERIN)) ~ T2

Moreover, it can be seen that our walk in this case is equivatethe so-called
random walk with internal states, consequently, a law gfdarumbers follows from
Nandori [20]
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lim RIN) . YR(N)logN
N—wo E(R(N)) N« 2mm/y—IN
As a special case from these results we recover the well-kRibwretzky-Erds

[13] results for the simple random walk on the plane (withihiet remainder term),
as for the plané = 1 andy = 2. Thus we get

1 a.s.

E(R(N)) ~ %, N — o.
and
RIN) i R(N)logN _

lim ———— = lim 1 a.s.
N—o0 E(R(N)) N—o0 TN
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