44 research outputs found

    High shock release in ultrafast laser irradiated metals: Scenario for material ejection

    Get PDF
    We present one-dimensional numerical simulations describing the behavior of solid matter exposed to subpicosecond near infrared pulsed laser radiation. We point out to the role of strong isochoric heating as a mechanism for producing highly non-equilibrium thermodynamic states. In the case of metals, the conditions of material ejection from the surface are discussed in a hydrodynamic context, allowing correlation of the thermodynamic features with ablation mechanisms. A convenient synthetic representation of the thermodynamic processes is presented, emphasizing different competitive pathways of material ejection. Based on the study of the relaxation and cooling processes which constrain the system to follow original thermodynamic paths, we establish that the metal surface can exhibit several kinds of phase evolution which can result in phase explosion or fragmentation. An estimation of the amount of material exceeding the specific energy required for melting is reported for copper and aluminum and a theoretical value of the limit-size of the recast material after ultrashort laser irradiation is determined. Ablation by mechanical fragmentation is also analysed and compared to experimental data for aluminum subjected to high tensile pressures and ultrafast loading rates. Spallation is expected to occur at the rear surface of the aluminum foils and a comparison with simulation results can determine a spall strength value related to high strain rates

    Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption

    Get PDF
    Approaching energy coupling in laser-irradiated metals, we point out the role of electron-electron collision as an efficient control factor for ultrafast optical absorption. The high degree of laser-induced electron-ion nonequilibrium drives a complex absorption pattern with consequences on the transient optical properties. Consequently, high electronic temperatures determine largely the collision frequency and establish a transition between absorptive regimes in solid and plasma phases. In particular, taking into account umklapp electron-electron collisions, we performed hydrodynamic simulations of the laser-matter interaction to calculate laser energy deposition during the electron-ion nonequilibrium stage and subsequent matter transformation phases. We observe strong correlations between optical and thermodynamic properties according to the experimental situations. A suitable connection between solid and plasma regimes is chosen in accordance with models that describe the behavior in extreme, asymptotic regimes. The proposed approach describes as well situations encountered in pump-probe types of experiments, where the state of matter is probed after initial excitation. Comparison with experimental measurements shows simulation results which are sufficiently accurate to interpret the observed material behavior. A numerical probe is proposed to analyze the transient optical properties of matter exposed to ultrashort pulsed laser irradiation at moderate and high intensities. Various thermodynamic states are assigned to the observed optical variation. Qualitative indications of the amount of energy coupled in the irradiated targets are obtained. Keywords: ultrafast absorption ; umklapp electron-electron collision ; collisional absorption ; laser-matter interactio

    ABSORPTION OF ALUMINUM X-RAY LINES IN A LASER CREATED GOLD PLASMA

    No full text
    La focalisation d'un faisceau laser intense sur une cible adaptée nous a permis de mettre en évidence et de mesurer l'absorption des raies de résonance de l'aluminium par un plasma d'or dans la game de longueur d'onde 5-7 Å.We have studied the absorption of aluminum X-ray lines through a gold plasma by focusing a high intensity laser-beam onto a specific target. Absorption in the wavelength range of 5 to 7 Å has been evidenced and measured for aluminum resonance lines

    Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction

    No full text
    International audienceTwo-dimensional particle-in-cell simulations are performed to study laser-induced proton acceleration from solid-density targets in the presence of laser-generated preformed plasma. The preplasma generation and hydrodynamics are described using a one-dimensional Lagrangian code. The electron acceleration mechanism is shown to depend on the plasma scale length, exhibiting a transition from J×B heating to standing wave heating as smoother and smoother profiles are considered. Accordingly, the relativistic electron temperature and the cutoff proton energy are found to increase with the preplasma characteristic length

    Spallation generated by femtosecond laser driven shocks in thin metallic targets

    No full text
    10 ppInternational audienceSpallation induced by a laser driven shock has been studied for two decades on time scales of nanosecond order. The evolution of laser technologies now opens access to sources whose pulse duration is under the picosecond, corresponding to characteristic times of numerous microscopic phenomena. In this ultra-short irradiation regime, spallation experiments have been performed with time-resolved measurements of the free surface. These measurements, complemented with post-test observations, have been compared with numerical simulations to check the consistency of modelling of the laser-matter interaction, shock propagation and to the study of dynamic damage at this ultra-short time scale, inducing strong tensile stress states at very high strain rates
    corecore