515 research outputs found

    OSTEOGENIC DIFFERENTIATION OF DENTAL PULP STEM CELLS ON POROUS SILICON LOADED WITH β-GLYCEROPHOSPHATE

    Full text link
    Oral Communication presented at the ";Forum des Jeunes Chercheurs";, Brest (France) 2011

    Damage profiles of ultrashallow B implants in Si and the Kinchin-Pease relationship

    Get PDF
    Damage distributions resulting from 0.1-2 keV B+ implantation at room temperature into Si(100) to doses ranging from 1×1014 to 2×1016 cm-2 have been determined using high-depth-resolution medium-energy-ion scattering in the double alignment mode. For all B+ doses and energies investigated a 3-4 nm deep, near-surface damage peak was observed while for energies at and above 1 keV, a second damage peak developed beyond the mean projected B+ ion range of 5.3 nm. This dual damage peak structure is due to dynamic annealing processes. For the near-surface peak it is observed that, at the lowest implant energies and doses used, for which recombination processes are suppressed due to the proximity of the surface capturing interstitials, the value of the damage production yield for low-mass B+ ions is equal or greater than the modified Kinchin-Pease model predictions [G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955); G. H. Kinchin and R. S. Pease, J. Nucl. Energy 1, 200 (1955); P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)]

    Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition

    Get PDF
    The early cell divisions of many metazoan embryos are rapid and occur in the near absence of transcription. At the mid-blastula transition (MBT), the cell cycle elongates and several processes become established including the onset of bulk transcription and cell-cycle checkpoints. How these events are timed and coordinated is poorly understood. Here we show in Xenopus laevis\textit{Xenopus laevis} that developmental activation of the checkpoint kinase Chk1 at the MBT results in the SCFβ^\betaTRCP^{-TRCP}-dependent degradation of a limiting replication initiation factor Drf1. Inhibition of Drf1 is the primary mechanism by which Chk1 blocks cell-cycle progression in the early embryo and is an essential function of Chk1 at the blastula-to-gastrula stage of development. This study defines the down-regulation of Drf1 as an important mechanism to coordinate the lengthening of the cell cycle and subsequent developmental processes.The work was supported by Worldwide Cancer Research 10-0908, Wellcome Trust 107056/Z/15/Z, Gurdon Institute funding (Cancer Research UK C6946/A14492, Wellcome Trust 092096), and Francis Crick Institute funding (Cancer Research UK FC001-157, the UK Medical Research Council FC001-157, Wellcome Trust FC001-157)

    Structure of nanoscale mesoporous silica spheres?

    Get PDF
    Abstract Hexagonal MCM-41 can be transformed into cubic MCM-48 and finally into spherical particles by the addition of alcohol during the synthesis of a mesoporous silica material. X-ray diffraction suggests that the structure of these spherical particles is of the MCM-41 type. Transmission electron microscopy however reveals that the structure of the mesoporous silica spherical particles consists of a core in the form of a truncated octahedron with an MCM-48 cubic structure and radial pores grown on the surfaces of the truncated octahedron. Spherical MCM particles therefore consist of a mixture of cubic and hexagonally arranged pores

    The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP and the Nuclear Exosome

    Get PDF
    BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation

    Analysis of Resonant Inelastic X-Ray Scattering in Stripe-Ordered Nickelate

    Full text link
    We analyze theoretically the resonant inelastic x-ray scattering (RIXS) at the Ni K edge in the stripe-ordered state of La_{2-x}Sr_xNiO_4 at x=1/3. In the calculation of RIXS spectra, the stripe-ordered ground state is described within the Hartree-Fock approximation by using a realistic tight-binding model for Ni3d\gamma and O2p_{x, y} orbitals, and the electron correlations in the electronic excitation processes are taken into account within the random-phase approximation. The calculated RIXS spectrum shows a tail toward the low-energy region when the momentum transfer of photons equals the stripe vector Q, being consistent with a recent experimental result. The origin of this anomalous momentum dependence of RIXS spectra is discussed microscopically.Comment: 23 pages, 9 figures. Published version in J. Phys. Soc. Jp

    Effect of comorbidities on survival in patients > 80 years of age at onset of renal replacement therapy: data from the ERA-EDTA Registry

    Get PDF
    Background. The number of elderly patients on renal replacement therapy (RRT) is increasing. The survival and quality of life of these patients may be lower if they have multiple comorbidities at the onset of RRT. The aim of this study was to explore whether the effect of comorbidities on survival is similar in elderly RRT patients compared with younger ones. Methods. Included were 9333 patients >= 80years of age and 48352 patients 20-79 years of age starting RRT between 2010 and 2015 from 15 national or regional registries submitting data to the European Renal Association-European Dialysis and Transplantation Association Registry. Patients were followed until death or the end of 2016. Survival was assessed by Kaplan-Meier curves and the relative risk of death associated with comorbidities was assessed by Cox regression analysis. Results. Patients >= 80years of age had a greater comorbidity burden than younger patients. However, relative risks of death associated with all studied comorbidities (diabetes, ischaemic heart disease, chronic heart failure, cerebrovascular disease, peripheral vascular disease and malignancy) were significantly lower in elderly patients compared with younger patients. Also, the increase in absolute mortality rates associated with an increasing number of comorbidities was smaller in elderly patients. Conclusions. Comorbidities are common in elderly patients who enter RRT, but the risk of death associated with comorbidities is less than in younger patients. This should be taken into account when assessing the prognosis of elderly RRT patients.Peer reviewe
    corecore