648 research outputs found

    Bank capital and profitability:Evidence from a global sample

    Get PDF
    This study employs bank-level data for a global sample to examine the relationship between capital and profitability over 2000-2013. Our evidence suggests that bank capital is positively related to bank profitability, although the estimated impact is relatively marginal. However, more capitalised banks that are more profitable appear to have a higher traditional risk, a greater proportion of non-traditional activities in their balance sheets and they tend to be more effective at controlling their costs. The relationship depends on environmental conditions as well and bank size. It is typically stronger in crisis periods, in lower and middle income countries and for larger banks (but not for Global Systemically Important Banks, or GSIBs). Finally, for banks operating in less restricted, more unstable and corrupt environments, the same increase in capital is associated with more profitable institutions than banks operating in countries with lower corruption levels. Our findings are robust to different specifications and robustness tests, and carry important implications for policy reforms aimed at ensuring stability to the banking sector globally

    Eurofusion-DEMO Divertor - Cassette Design and Integration

    Get PDF
    The Eurofusion-DEMO design will complete the Pre Conceptual Design phase (PCD) with a PCD Gate, named G1, scheduled to take place in Q4 2020 that will focus on assessing the feasibility of the plant and its main components prior to entering into the Conceptual Design phase. In the paper first an overview is given of the Eurofusion-DEMO Divertor Assembly including design and interface description, systems and functional requirements, load specification, system classification, manufacturing procedures and cost estimate. Then critical issues are discussed and potential design solutions are proposed, e.g.: - Neutron material damage limits of the different (structural) materials present in the divertor assembly (as CuCrZr, Eurofer) and in the vacuum vessel (AISI 316 L(N)-IG); - Temperature hot spots in parts of the divertor assembly exposed to high nuclear heating and high heat radiation (from the plasma core or the separatrix) causing difficulties for active or passive cooling (e.g. cassette body structure, liner support structures, mechanical supports, divertor toroidal rails); - Arrangement and design of plasma-facing components and liner with pumping slot in the divertor cassette to enable pumping of exhaust gases from the lower port

    Divertor of the European DEMO: Engineering and technologies for power exhaust

    Get PDF
    In a power plant scale fusion reactor, a huge amount of thermal power produced by the fusion reaction and external heating must be exhausted through the narrow area of the divertor targets. The targets must withstand the intense bombardment of the diverted particles where high heat fluxes are generated and erosion takes place on the surface. A considerable amount of volumetric nuclear heating power must also be exhausted. To cope with such an unprecedented power exhaust challenge, a highly efficient cooling capacity is required. Furthermore, the divertor must fulfill other critical functions such as nuclear shielding and channeling (and compression) of exhaust gas for pumping. Assuring the structural integrity of the neutron-irradiated (thus embrittled) components is a crucial prerequisite for a reliable operation over the lifetime. Safety, maintainability, availability, waste and costs are another points of consideration. In late 2020, the Pre-Conceptual Design activities to develop the divertor of the European demonstration fusion reactor were officially concluded. On this occasion, the baseline design and the key technology options were identified and verified by the project team (EUROfusion Work Package Divertor) based on seven years of R&D efforts and endorsed by Gate Review Panel. In this paper, an overview of the load specifications, brief descriptions of the design and the highlights of the technology R&D work are presented together with the further work still needed

    First Plasma Operation of the Enhanced JET Vertical Stabilisation System First Plasma Operation of the Enhanced JET Vertical Stabilisation System

    Get PDF
    AbstrAct A project dedicated to the enhancement of the JET Vertical Stabilization system was launched in 2006, including an upgrade of the Power Supply of the Radial Field Amplifier, of hardware and software of the VS control system. The main aim was to double the JET capability in stabilising high current plasmas when subject to perturbations, in particular large Edge Localised Modes. We present here the results of first plasma operation with the new Enhanced Radial Field Amplifier and its data acquisition and control system, focussing on the benefits of an approach based on phased commissioning, modelling and offline algorithm validation

    DTT - Divertor Tokamak Test facility: A testbed for DEMO

    Get PDF
    The effective treatment of the heat and power exhaust is a critical issue in the road map to the realization of the fusion energy. In order to provide possible, reliable, well assessed and on-time answers to DEMO, the Divertor Tokamak Test facility (DTT) has been conceived and projected to be carried out and operated within the European strategy in fusion technology. This paper, based on the invited plenary talk at the 31st virtual SOFT Conference 2020, provides an overview of the DTT scientific proposal, which is deeply illustrated in the 2019 DTT Interim Design Report

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac
    corecore