267 research outputs found

    Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells

    Get PDF
    AbstractA metabolic shift from oxidative phosphorylation to glycolysis (i.e. the Warburg effect) occurs in Alzheimer’s disease accompanied by an increase of both activity and level of HK-I. The findings reported here demonstrate that in the early phase of apoptosis VDAC1 activity, but not its protein level, progressively decreases, in concomitance with the physical interaction of HK-I with VDAC1. In the late phase of apoptosis, glucose-6-phosphate accumulation in the cell causes the dissociation of the two proteins, the re-opening of the channel and the recovery of VDAC1 function, resulting in a reawakening of the mitochondrial function, thus inevitably leading to cell death

    Does the term 'trophic' actually mean anti-amyloidogenic? The case of NGF.

    Get PDF
    The term trophic is widely used to indicate a general pro-survival action exerted on target cells by different classes of extracellular messengers, including neurotrophins (NTs), a family of low-molecular-weight proteins whose archetypal member is the nerve growth factor (NGF). The pro-survival action exerted by NTs results from a coordinated activation of multiple metabolic pathways, some of which have only recently come to light. NGF has been shown to exert a number of different, experimentally distinguishable effects on neurons, such as survival, differentiation of target neurons, growth of nerve fibers and their guidance (tropism) toward the source of its production. We have proposed a more complete definition of the NGF trophic action that should also include its newly discovered property of inhibiting the amyloidogenic processing of amyloid precursor protein (APP), which is among the first hypothesized primary trigger of Alzheimer's disease (AD) pathogenesis. This inhibitory action appears to be mediated by a complex series of molecular events and by interactions among NGF receptors (TrkA and p75), APP processing and tau metabolic fate and fun

    AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons

    No full text
    Functional as well as structural alterations in mitochondria size, shape and distribution are precipitating, early events in progression of Alzheimer's Disease (AD). We reported that a 20\u201322 kDa NH2-tau fragment (aka NH2htau), mapping between 26 and 230 amino acids of the longest human tau isoform, is detected in cellular and animal AD models and is neurotoxic in hippocampal neurons. The NH2htau \u2013but not the physiological full-length protein\u2013 interacts with A\u3b2 at human AD synapses and cooperates with it in inhibiting the mitochondrial ANT-1-dependent ADP/ATP exchange. Here we show that the NH2htau also adversely affects the interplay between the mitochondria dynamics and their selective autophagic clear- ance. Fragmentation and perinuclear mislocalization of mitochondria with smaller size and density are early found in dying NH2htau-expressing neurons. The specific effect of NH2htau on quality control of mitochondria is accompanied by (i) net reduction in their mass in correlation with a general Parkin- mediated remodeling of membrane proteome; (ii) their extensive association with LC3 and LAMP1 autoph- agic markers; (iii) bioenergetic deficits and (iv) in vitro synaptic pathology. These results suggest that NH2htau can compromise the mitochondrial biology thereby contributing to AD synaptic deficits not only by ANT-1 inactivation but also, indirectly, by impairing the quality control mechanism of these organelles

    AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons

    No full text
    Functional as well as structural alterations in mitochondria size, shape and distribution are precipitating, early events in progression of Alzheimer's Disease (AD). We reported that a 20\u201322 kDa NH2-tau fragment (aka NH2htau), mapping between 26 and 230 amino acids of the longest human tau isoform, is detected in cellular and animal AD models and is neurotoxic in hippocampal neurons. The NH2htau \u2013but not the physiological full-length protein\u2013 interacts with A\u3b2 at human AD synapses and cooperates with it in inhibiting the mitochondrial ANT-1-dependent ADP/ATP exchange. Here we show that the NH2htau also adversely affects the interplay between the mitochondria dynamics and their selective autophagic clear- ance. Fragmentation and perinuclear mislocalization of mitochondria with smaller size and density are early found in dying NH2htau-expressing neurons. The specific effect of NH2htau on quality control of mitochondria is accompanied by (i) net reduction in their mass in correlation with a general Parkin- mediated remodeling of membrane proteome; (ii) their extensive association with LC3 and LAMP1 autoph- agic markers; (iii) bioenergetic deficits and (iv) in vitro synaptic pathology. These results suggest that NH2htau can compromise the mitochondrial biology thereby contributing to AD synaptic deficits not only by ANT-1 inactivation but also, indirectly, by impairing the quality control mechanism of these organelles

    The medial septum is insulin resistant in the AD presymptomatic phase: rescue by nerve growth factor-driven IRS1 activation.

    Get PDF
    Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3 7Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3 7Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance

    Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer’s Disease

    Get PDF
    Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer’s Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications—such as truncation with generation of toxic fragments—nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20–22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings

    NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease.

    Get PDF
    Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance

    NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease

    Get PDF
    NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo-hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2-containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APPpT668). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APPpT668 levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP\u2013BACE interaction is hindered, finally resulting in reduced generation of sAPP\u3b2, CTF\u3b2 and amyloid-beta (1-42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP\u2013TrkA interaction in AD therapy

    Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse AD models

    Get PDF
    Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer\u2019s disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26\u201336aa of tau protein) could improve the Alzheimer\u2019s disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloid\u3b2 metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer\u2019s disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20\u201322 kDa NH2-terminal tau fragment is crucial target for Alzheimer\u2019s disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloid\u3b2-dependent and independent neuropathological and cognitive alterations in affected subject
    • …
    corecore