139 research outputs found

    Life cycle assessment of bacterial cellulose production

    Get PDF
    Purpose Bacterial cellulose (BC), obtained by fermentation, is an innovative and promising material with a broad spectrum of potential applications. Despite the increasing efforts towards its industrialization, a deeper understanding of the environmental impact related to the BC production process is still required. This work aimed at quantifying the environmental, health, and resource depletion impacts related to a production of BC. Methods An attributional life cycle assessment (LCA) was applied to a process design of production of BC, by static culture, following a cradle-to-gate approach. The LCA was modeled with GaBi Pro Software using the ReCiPe 2016 (H) methodology with environmental impact indicators at midpoint level. The functional unit was defined as 1 kg of BC (dry mass), in 138.8 kg of water. Results From the total used resources (38.9 ton/kg of BC), water is the main one (36.1 ton/kg of BC), most of which (98%) is returned to fresh waters after treatment. The production of raw materials consumed 17.8 ton of water/kg of BC, 13.8 ton/kg of BC of which was for the production of carton packaging, culture medium raw materials, and sodium hydroxide (for the washing of BC). The remaining consumed water was mainly for the fermentation (3.9 ton/kg) and downstream process (7.7 ton/kg). From the identified potential environmental impacts, the production of raw materials had the highest impact, mainly on Climate change, Fossil depletion, Human toxicity, non-cancer, and Terrestrial toxicity. The sodium dihydrogen phosphate production, used in the culture medium, showed the highest environmental impacts in Human toxicity, non-cancer and Terrestrial ecotoxicity, followed by corn syrup and carton production. The static culture fermentation and downstream process showed impact in Climate change and Fossil depletion. Conclusions Per se, the BC production process had a small contribution to the consumption of resources and environmental impact of the BC global life cycle.This study was supported by the Portuguese Foundation for Science and Technology (FCT) within the scope of the strate gic funding of UIDB/04469/2020 and UIDB/00511/2020 units and MultiBiorefinery project (SAICTPAC/0040/2015-POCI-01-0145- FEDER-016403). This study was also supported by The Navigator Company through the I&D no. 21874, “Inpactus-–Produtos e Tecno logias Inovadores a partir do Eucalipto”, funded through the European Regional Development Fund (ERDF) and the Programa Operacional Competitividade e Internacionalização (POCI) is greatly acknowl edged. The work by Belmira Neto was fnancially supported by Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineer ing, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC).info:eu-repo/semantics/publishedVersio

    High prevalence of Pneumocystis jirovecii pneumonia among Mozambican children <5 years of age admitted to hospital with clinical severe pneumonia

    Get PDF
    We aimed to describe Pneumocystis jirovecii pneumonia (PCP) prevalence and features in children from sub-Saharan Africa and to investigate PCP-associated risk factors. During 2006–2007 we used molecular methods to test children younger than 5 years old admitted with severe pneumonia to a hospital in southern Mozambique for Pneumocystis infection. We recruited 834 children. PCP prevalence was 6.8% and HIV prevalence was 25.7%. The in-hospital and delayed mortality were significantly higher among children with PCP (20.8% vs. 10.2%, p 0.021, and 11.5% vs. 3.6%, p 0.044, respectively). Clinical features were mostly overlapping between the two groups. Independent risk factors for PCP were age less than a year (odds ratio (OR) 6.34, 95% confidence interval (CI) 1.86–21.65), HIV infection (OR 2.99, 95% CI 1.16–7.70), grunting (OR 2.64, 95% CI 1.04–6.73) and digital clubbing (OR 10.75, 95% CI 1.21–95.56). PCP is a common and life-threatening cause of severe pneumonia in Mozambican children. Mother-to-child HIV transmission prevention should be strengthened. Better diagnostic tools are needed.This work was supported by the World Health Organization (WHO-C6-181-489). QB has a fellowship from the program Miguel Servet of the ISCIII (Plan Nacional de I+D+I 2008–2011, grant CP11/00269). LM has a fellowship from the program Río Hortega of the ISCIII (CM13/00260).Peer reviewe

    The Mini-EUSO telescope on board the International Space Station: Launch and first results

    Get PDF
    Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. It is also capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 1021^{21} eV and detect artificial showers generated with lasers from the ground. Mini-EUSO can map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019/08/22 from the Baikonur cosmodrome is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44°. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first year of operation

    Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations

    Get PDF
    The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives

    EUSO-SPB2 Telescope Optics and Testing

    Get PDF
    The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Cherenkov- and fluorescence emission of extensive air showers from cosmic rays at the PeV and EeV-scale, and search for Ď„-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Cherenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Cherenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand

    Simulation studies for the Mini-EUSO detector

    Get PDF
    Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021^{21} eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources

    Observation of ELVES with Mini-EUSO telescope on board the International Space Station

    Get PDF
    Mini-EUSO is a detector observing the Earth in the ultraviolet band from the International Space Station through a nadir-facing window, transparent to the UV radiation, in the Russian Zvezda module. Mini-EUSO main detector consists in an optical system with two Fresnel lenses and a focal surface composed of an array of 36 Hamamatsu Multi-Anode Photo-Multiplier tubes, for a total of 2304 pixels, with single photon counting sensitivity. The telescope also contains two ancillary cameras, in the near infrared and visible ranges, to complement measurements in these bandwidths. The instrument has a field of view of 44 degrees, a spatial resolution of about 6.3 km on the Earth surface and of about 4.7 km on the ionosphere. The telescope detects UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few s upwards. On the fastest timescale of 2.5 s, Mini EUSO is able to observe atmospheric phenomena as Transient Luminous Events and in particular the ELVES, which take place when an electromagnetic wave generated by intra-cloud lightning interacts with the ionosphere, ionizing it and producing apparently superluminal expanding rings of several 100 km and lasting about 100 s. These highly energetic fast events have been observed to be produced in conjunction also with Terrestrial Gamma-Ray Flashes and therefore a detailed study of their characteristics (speed, radius, energy ...) is of crucial importance for the understanding of these phenomena. In this paper we present the observational capabilities of ELVE detection by Mini-EUSO and specifically the reconstruction and study of ELVE characteristics

    Simulation studies for the Mini-EUSO detector

    Get PDF
    Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modelled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyse the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021^{21} eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterisation of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources

    EUSO-SPB1 mission and science

    Get PDF
    The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
    • …
    corecore