3,113 research outputs found

    Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1

    Get PDF
    A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980

    Is the `IR Coincidence' Just That?

    Full text link
    (Abridged) Motch (1985) suggested that in the hard state of GX 339-4 the soft X-ray power-law extrapolated backward in energy agrees with the IR flux. Corbel & Fender (2002) showed that the hard state radio power-law extrapolated forward in energy meets the extrapolated X-ray power-law at an IR break, which was explicitly observed twice in GX 339-4. This `IR coincidence' has been cited as further evidence that a jet might make a significant contribution to the X-rays in hard state systems. We explore this hypothesis with a series of simultaneous radio/X-ray observations of GX 339-4, taken during its 1997, 1999, and 2002 hard states. We fit these spectra, in detector space, with a simple, but remarkably successful, doubly broken power-law that requires an IR spectral break. For these observations, the break position and the integrated radio/IR flux have stronger dependences upon the X-rays than the simplest jet predictions. If one allows for a softening of the X-ray power law with increasing flux, then the jet model agrees with the correlation. We also find evidence that the radio/X-ray fcorrelation previously observed in GX 339-4 shows a `parallel track' for the 2002 hard state. The slope of the 2002 correlation is consistent with prior observations; however, the radio amplitude is reduced. We then examine the correlation in Cyg X-1 through the use of radio data, obtained with the Ryle radio telescope, and RXTE data, from the ASM and pointed observations. We again find evidence of `parallel tracks', and here they are associated with `failed transitions' to the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard X-ray flux.Comment: To Appear in the July 2005 Astrophysical Journal; 9 Pages, uses emulateapj.st

    Trapping in complex networks

    Full text link
    We investigate the trapping problem in Erdos-Renyi (ER) and Scale-Free (SF) networks. We calculate the evolution of the particle density ρ(t)\rho(t) of random walkers in the presence of one or multiple traps with concentration cc. We show using theory and simulations that in ER networks, while for short times ρ(t)exp(Act)\rho(t) \propto \exp(-Act), for longer times ρ(t)\rho(t) exhibits a more complex behavior, with explicit dependence on both the number of traps and the size of the network. In SF networks we reveal the significant impact of the trap's location: ρ(t)\rho(t) is drastically different when a trap is placed on a random node compared to the case of the trap being on the node with the maximum connectivity. For the latter case we find \rho(t)\propto\exp\left[-At/N^\frac{\gamma-2}{\gamma-1}\av{k}\right] for all γ>2\gamma>2, where γ\gamma is the exponent of the degree distribution P(k)kγP(k)\propto k^{-\gamma}.Comment: Appendix adde

    Evolutionary dynamics on degree-heterogeneous graphs

    Full text link
    The evolution of two species with different fitness is investigated on degree-heterogeneous graphs. The population evolves either by one individual dying and being replaced by the offspring of a random neighbor (voter model (VM) dynamics) or by an individual giving birth to an offspring that takes over a random neighbor node (invasion process (IP) dynamics). The fixation probability for one species to take over a population of N individuals depends crucially on the dynamics and on the local environment. Starting with a single fitter mutant at a node of degree k, the fixation probability is proportional to k for VM dynamics and to 1/k for IP dynamics.Comment: 4 pages, 4 figures, 2 column revtex4 format. Revisions in response to referee comments for publication in PRL. The version on arxiv.org has one more figure than the published PR

    An electron paramagnetic resonance study of Pr_{0.6}Ca_{0.4}MnO_{3} across the charge ordering transition

    Full text link
    We report the first electron paramagnetic resonance studies of single crystals and powders of Pr_{0.6}Ca_{0.4}MnO_{3} in the 300-4.2 K range, covering the charge ordering transition at ~ 240 K and antiferromagnetic transition (T_N) at ~ 170 K. The asymmetry parameter for the Dysonian single crystal spectra shows anomalous increase at T_{co}. Below T_{co} the g-value increases continuously, suggesting a gradual strengthening of orbital ordering. The linewidth undergoes a sudden increase at T_{co} and continues to increase down to T_N. The intensity increases as the temperature is decreased till T_{co} due to the renormalization of magnetic susceptibility arising from the build up of ferromagnetic correlations. The value of the exchange constant, J, is estimated to be 154 K.Comment: Uses Revtex3.

    Rapidity distribution as a probe for elliptical flow at intermediate energies

    Full text link
    Interplay between the spectator and participant matter in heavy-ion collisions is investigated within isospin dependent quantum molecular dynamics (IQMD) model in term of rapidity distribution of light charged particles. The effect of different types and size rapidity distributions is studied in elliptical flow. The elliptical flow patterns show important role of the nearby spectator matter on the participant zone. This role is further explained on the basis of passing time of the spectator and expansion time of the participant zone. The transition from the in-plane to out-of-plane is observed only when the mid-rapidity region is included in the rapidity bin, otherwise no transition occurs. The transition energy is found to be highly sensitive towards the size of the rapidity bin, while weakly on the type of the rapidity distribution. The theoretical results are also compared with the experimental findings and are found in good agreement.Comment: 8 figure

    Mean-field analysis of the q-voter model on networks

    Get PDF
    We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.Comment: 20 pages, 10 figure
    corecore