24,784 research outputs found
Near-infrared and X-ray obscuration to the nucleus of the Seyfert 2 galaxy NGC 3281
We present the results of a near-infrared and X-ray study of the Seyfert 2
galaxy NGC 3281. Emission from the Seyfert nucleus is detected in both regions
of the electromagnetic spectrum, allowing us to infer both the equivalent line
of sight hydrogen column density, N_H = 71.0(+11.3,-12.3)e26/m^2 and the
extinction due to dust, A_V = 22+/-11 magnitudes (90% confidence intervals). We
infer a ratio of N_H/A_V which is an order of magnitude larger than that
determined along lines of sight in the Milky Way and discuss possible
interpretations. We consider the most plausible explanation to be a dense cloud
in the foreground of both the X-ray and infrared emitting regions which
obscures the entire X-ray source but only a fraction of the much larger
infrared source.Comment: 23 pages including 9 figure
Cryogenic propellant venting under low pressure conditions Final report
Wall temperatures and heat transfer coefficients for solid-vapor mixtures of para hydrogen and nitrogen venting under low pressur
Microscopic two-nucleon overlaps and knockout reactions from C
The nuclear structure dependence of direct reactions that remove a pair of
like or unlike nucleons from a fast C projectile beam are considered.
Specifically, we study the differences in the two-nucleon correlations present
and the predicted removal cross sections when using -shell shell-model and
multi- no-core shell-model (NCSM) descriptions of the two-nucleon
overlaps for the transitions to the mass =10 projectile residues. The NCSM
calculations use modern chiral two-nucleon and three-nucleon (NN+3N)
interactions. The -removal cross sections to low-lying =0, B
final states are enhanced when using the NCSM two-nucleon amplitudes. The
calculated absolute and relative partial cross sections to the low energy
B final states show a significant sensitivity to the interactions used,
suggesting that assessments of the overlap functions for these transitions and
confirmations of their structure could be made using final-state-exclusive
measurements of the -removal cross sections and the associated momentum
distributions of the forward travelling projectile-like residues.Comment: 9 pages, 7 figure
The cosmic evolution of radio-AGN feedback to z=1
This paper presents the first measurement of the radio luminosity function of
'jet-mode' (radiatively-inefficient) radio-AGN out to z=1, in order to
investigate the cosmic evolution of radio-AGN feedback. Eight radio source
samples are combined to produce a catalogue of 211 radio-loud AGN with
0.5<z<1.0, which are spectroscopically classified into jet-mode and
radiative-mode (radiatively-efficient) AGN classes. Comparing with large
samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic
evolution of the radio luminosity function of each radio-AGN class is
independently derived. Radiative-mode radio-AGN show an order of magnitude
increase in space density out to z~1 at all luminosities, consistent with these
AGN being fuelled by cold gas. In contrast, the space density of jet-mode
radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 <
1e24 W/Hz) but increases at higher radio luminosities. Simple models are
developed to explain the observed evolution. In the best-fitting models, the
characteristic space density of jet-mode AGN declines with redshift in
accordance with the declining space density of massive quiescent galaxies,
which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2
Gyr may be present between the quenching of star formation and the onset of
jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be
explained either by an increasing characteristic luminosity of jet-mode
radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode
radio-AGN population also includes some contribution of cold-gas-fuelled
sources seen at a time when their accretion rate was low. Higher redshifts
measurements would distinguish between these possibilities.Comment: Accepted for publication in MNRA
Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br
Using tunable vacuum-UV radiation from a synchrotron, negative ions are detected by quadrupolar mass spectrometry following photoexcitation of three gaseous halogenated methanes CHX (X = F,Cl,Br). The anions X, H, CX, CHX and CHX are observed, and their ion yields recorded in the range 8-35 eV. The anions show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically described as AB + h A + B (+ neutrals). Absolute cross sections for ion-pair formation are obtained by calibrating the signal intensities with those of F from both SF and CF. The cross sections for formation of X + CH are much greater than for formation of CHX + H. In common with many quadrupoles, the spectra of / 1 (H) anions show contributions from all anions, and only for CHBr is it possible to perform the necessary subtraction to obtain the true H spectrum. The anion cross sections are normalised to vacuum-UV absorption cross sections to obtain quantum yields for their production. The appearance energies of X and CHX are used to calculate upper limits to 298 K bond dissociation energies for D (HC-X) and D (XHC-H) which are consistent with literature values. The spectra suggest that most of the anions are formed indirectly by crossing of Rydberg states of the parent molecule onto an ion-pair continuum. The one exception is the lowest-energy peak of F from CHF at 13.4 eV, where its width and lack of structure suggest it may correspond to a direct ion-pair transition
Incorporating spatial correlations into multispecies mean-field models
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques
Estimating the masses of extra-solar planets
All extra-solar planet masses that have been derived spectroscopically are
lower limits since the inclination of the orbit to our line-of-sight is unknown
except for transiting systems. It is, however, possible to determine the
inclination angle, i, between the rotation axis of a star and an observer's
line-of-sight from measurements of the projected equatorial velocity (v sin i),
the stellar rotation period (P_rot) and the stellar radius (R_star). This
allows the removal of the sin i dependency of spectroscopically derived
extra-solar planet masses under the assumption that the planetary orbits lie
perpendicular to the stellar rotation axis. We have carried out an extensive
literature search and present a catalogue of v sin i, P_rot, and R_star
estimates for exoplanet host stars. In addition, we have used Hipparcos
parallaxes and the Barnes-Evans relationship to further supplement the R_star
estimates obtained from the literature. Using this catalogue, we have obtained
sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper
1-sigma two-tailed confidence limits to be placed on the derived sin i's along
with the transit probability for each planet to be determined. While a small
proportion of systems yield sin i's significantly greater than 1, most likely
due to poor P_rot estimations, the large majority are acceptable. We are
further encouraged by the cases where we have data on transiting systems, as
the technique indicates inclinations of ~90 degrees and high transit
probabilities. In total, we estimate the true masses of 133 extra-solar
planets. Of these, only 6 have revised masses that place them above the 13
Jupiter mass deuterium burning limit. Our work reveals a population of
high-mass planets with low eccentricities and we speculate that these may
represent the signature of different planetary formation mechanisms at work.Comment: 40 pages, 6 tables, 2 figures. Accepted for publication in the
Monthly Notices of the Royal Astronomical Society after editing of Tables 1 &
6 for electronic publication. Html abstract shortened for astro-ph submissio
Study of the stress intensity factors in the bulk of the material with synchrotron diffraction
Artículo de Proceedings de Congreso Internacional Fatigue2017In this work we present the results of a hybrid experimental and
analytical approach for estimating the stress intensity factor. It uses the
elastic strains within the bulk obtained by synchrotron X-ray diffraction
data. The stress intensity factor is calculated using a multi-point overdeterministic
method where the number of experimental data points is
higher than the number of unknowns describing the elastic field
surrounding the crack-tip. The tool is tested on X-ray strain
measurements collected on a bainitic steel. In contrast to surface
techniques the approach provides insights into the crack tip mechanics
deep within the sample.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. The authors are grateful to the ESRF for ID15 beamtime awarded under MA-1483. Financial
support of Universidad de Malaga through Plan Propio, Junta de Andalucía through Proyectos de
Excelencia grant reference TEP-3244, Campus de Excelencia Internacional del Mar (CEIMAR)
and Ministerio de Economia y Competitividad through grant reference MAT2016-76951-C2-2-P is
also acknowledged. PJW acknowledges an ERC advanced grant
Vacuum-UV negative photoion spectroscopy of CF3Cl, CF3Br and CF3I
Using synchrotron radiation negative ions have been detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CFCl), trifluorobromomethane (CFBr) and trifluoroiodomethane (CFI). The anions F, X, F, FX, CF, CF and CF were observed from all three molecules, where X = Cl, Br or I, and their ion yields recorded in the range 8-35 eV. With the exception of Br and I, the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CFBr and CFI as the source of low-energy electrons, is shown to dominate the observed Br and I signals, respectively. Cross sections for ion-pair formation are put on to an absolute scale by calibrating the signal strengths with those of F from both SF and CF. These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for (CF-X) which are consistent with literature values. We report new data for (CFI-F) ≤ 2.7 ± 0.2 eV and (CFI) ≤ (598 ± 22) kJ mol. No ion-pair formation is observed below the ionization energy of the parent molecule for CFCl and CFBr, and only weak signals (in both I and F) are detected for CFI. These observations suggest neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies
- …