10,341 research outputs found

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191

    Get PDF
    Associated absorption lines (AALs) are valuable probes of the gaseous environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured AALs have ionizations ranging from Mg I to N V, and multi-component profiles that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad emission lines. These data yield the following new results. 1) The density based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from the quasar if the gas is photoionized. 2) The characteristic flow time is thus \~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this region, compared to ~15 cm-3 where the N V lines form. 4) The total column density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x 10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10% >. 6) The absorbing gas only partially covers the background light source(s) along our line(s) of sight, requiring absorption in small clouds or filaments <0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line- of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class of AALs that are physically related to quasars but form at large distances. We propose a model for the absorber in which pockets of dense neutral gas are surrounded by larger clouds of generally lower density and higher ionization. This outflowing material might be leftover from a blowout associated with a nuclear starburst, the onset of quasar activity or a past broad absorption line (BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t∌6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t∌10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    The Nature of Associated Absorption and the UV-X-ray Connection in 3C 288.1

    Full text link
    We discuss new Hubble Space Telescope spectroscopy of the radio-loud quasar, 3C 288.1. The data cover ~590 A to ~1610 A in the quasar rest frame. They reveal a wealth of associated absorption lines (AALs) with no accompanying Lyman-limit absorption. The metallic AALs range in ionization from C III and N III to Ne VIII and Mg X. We use these data and photoionization models to derive the following properties of the AAL gas: 1) There are multiple ionization zones within the AAL region, spanning a factor of at least ~50 in ionization parameter. 2) The overall ionization is consistent with the ``warm'' X-ray continuum absorbers measured in Seyfert 1 nuclei and other QSOs. However, 3) the column densities implied by the AALs in 3C 288.1 are too low to produce significant bound-free absorption at any UV-X-ray wavelengths. Substantial X-ray absorption would require yet another zone, having a much higher ionization or a much lower velocity dispersion than the main AAL region. 4) The total hydrogen column density in the AAL gas is log N_H (cm-2)= 20.2. 5) The metallicity is roughly half solar. 6) The AALs have deconvolved widths of ~900 km/s and their centroids are consistent with no shift from the quasar systemic velocity (conservatively within +/-1000 km/s). 7) There are no direct indicators of the absorber's location in our data, but the high ionization and high metallicity both suggest a close physical relationship to the quasar/host galaxy environment. Finally, the UV continuum shape gives no indication of a ``blue bump'' at higher energies. There is a distinct break of unknown origin at ~1030 A, and the decline toward higher energies (with spectral index alpha = -1.73, for f_nu ~ nu^alpha) is even steeper than a single power-law interpolation from 1030 A to soft X-rays.Comment: 27 pages with figures and tables, in press with Ap

    Quantum Non-demolition Measurements on Qubits

    Get PDF
    We discuss the characterization and properties of quantum non-demolition (QND) measurements on qubit systems. We introduce figures of merit which can be applied to systems of any Hilbert space dimension thus providing universal criteria for characterizing QND measurements. We discuss the controlled-NOT gate and an optical implementation as examples of QND devices for qubits. We also discuss the QND measurement of weak values
    • 

    corecore