478 research outputs found

    Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Full text link
    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point charges on the interface, and 3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function (ICDF) and potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes have significant impacts on the zeta potential, and thus the structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change

    Colloidal aggregation in microgravity by critical Casimir forces

    Full text link
    By using the critical Casimir force, we study the attractive strength dependent aggregation of colloids with and without gravity by means of Near Field scattering. Significant differences were seen between microgravity and ground experiments, both in the structure of the formed fractal aggregates as well as the kinetics of growth. Ground measurements are severely affected by sedimentation resulting in reaction limited behavior. In microgravity, a purely diffusive behavior is seen reflected both in the measured fractal dimensions for the aggregates as well as the power law behavior in the rate of growth. Formed aggregates become more open as the attractive strength increases.Comment: 4 pages, 3 figure

    Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface

    Full text link
    Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte (PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant concentrations show that minute surfactant concentrations induce the formation of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity and grazing angle X-ray diffraction (GIXD) provide detailed information of the top most layer, where it is found that the surfactant forms a two-dimensional liquid-like monolayer, with a noticeable disruption of the structure of water at the interface. With the addition of salt (NaCl) columnar-crystals with distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure

    A simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions

    Full text link
    Monte Carlo simulations of a spherical macroion, surrounded by a size-asymmetric electrolyte in the primitive model, were performed. We considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice the size of counterions), for several surface charge densities of the macrosphere. The radial distribution functions, electrostatic potential at the Helmholtz surfaces, and integrated charge are reported. We compare these simulational data with original results obtained from the Ornstein-Zernike integral equation, supplemented by the hypernetted chain/hypernetted chain (HNC/HNC) and hypernetted chain/mean spherical approximation (HNC/MSA) closures, and with the corresponding calculations using the modified Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC/HNC and HNC/MSA integral equations formalisms show good concordance with Monte Carlo "experiments", whereas the notable limitations of point-ion approaches are evidenced. Most importantly, the simulations confirm our previous theoretical predictions of the non-dominance of the counterions in the size-asymmetric spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the appearance of anomalous curvatures at the outer Helmholtz plane and the enhancement of charge reversal and screening at high colloidal surface charge densities due to the ionic size asymmetry.Comment: 11 pages, 7 figure

    The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study

    Full text link
    The hypernetted chain/mean spherical approximation (HNC/MSA) integral equation is obtained and solved numerically for a totally asymmetric primitive model electrolyte around a spherical macroparticle. The ensuing radial distribution functions show a very good agreement when compared to our Monte Carlo and molecular dynamics simulations for spherical geometry and with respect to previous anisotropic reference HNC calculations in the planar limit. We report an analysis of the potential vs charge relationship, radial distribution functions, mean electrostatic potential and cumulative reduced charge for representative cases of 1:1 and 2:2 salts with a size asymmetry ratio of 2. Our results are collated with those of the Modified Gouy-Chapman (MGC) and unequal radius Modified Gouy-Chapman (URMGC) theories and with those of HNC/MSA in the restricted primitive model (RPM) to assess the importance of size asymmetry effects. One of the most striking characteristics found is that,\textit{contrary to the general belief}, away from the point of zero charge the properties of an asymmetric electrical double layer (EDL) are not those corresponding to a symmetric electrolyte with the size and charge of the counterion, i.e. \textit{counterions do not always dominate}. This behavior suggests the existence of a new phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where steric correlations are taken into account consistently. Such novel features can not be described by traditional mean field theories like MGC, URMGC or even by enhanced formalisms, like HNC/MSA, if they are based on the RPM.Comment: 29 pages, 13 figure

    Spatial Stability of Incompressible Attachment-Line Flow

    Get PDF
    Linear stability analysis of incompressible attachment-line flow is presented within the spatial framework. The system of perturbation equations is solved using spectral collocation. This system has been solved in the past using the temporal approach and the current results are shown to be in excellent agreement with neutral temporal calculations. Results amenable to direct comparison with experiments are then presented for the case of zero suction. The global solution method utilized for solving the eigenproblem yields, aside from the well-understood primary mode, the full spectrum of least-damped waves. Of those, a new mode, well separated from the continuous spectrum is singled out and discussed. Further, relaxation of the condition of decaying perturbations in the far-field results in the appearance of sinusoidal modes akin to those found in the classical Orr-Sommerfeld problem. Finally, the continuous spectrum is demonstrated to be amenable to asymptotic analysis. Expressions are derived for the location, in parameter space, of the continuous spectrum, as well as for the limiting cases of practical interest. In the large Reynolds number limit the continuous spectrum is demonstrated to be identical to that of the Orr-Sommerfeld equation

    Melflufen and dexamethasone in heavily pretreated relapsed and refractory multiple myeloma

    Get PDF
    PURPOSE Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate that targets aminopeptidases and rapidly and selectively releases alkylating agents into tumor cells. The phase II HORIZON trial evaluated the efficacy of melflufen plus dexamethasone in relapsed and refractory multiple myeloma (RRMM), a population with an important unmet medical need. PATIENTS AND METHODS Patients with RRMM refractory to pomalidomide and/or an anti-CD38 monoclonal antibody received melflufen 40 mg intravenously on day 1 of each 28-day cycle plus once weekly oral dexamethasone at a dose of 40 mg (20 mg in patients older than 75 years). The primary end point was overall response rate (partial response or better) assessed by the investigator and confirmed by independent review. Secondary end points included duration of response, progression-free survival, overall survival, and safety. The primary analysis is complete with long-term follow-up ongoing. RESULTS Of 157 patients (median age 65 years; median five prior lines of therapy) enrolled and treated, 119 patients (76%) had triple-class–refractory disease, 55 (35%) had extramedullary disease, and 92 (59%) were refractory to previous alkylator therapy. The overall response rate was 29% in the all-treated population, with 26% in the triple-class–refractory population. In the all-treated population, median duration of response was 5.5 months, median progression-free survival was 4.2 months, and median overall survival was 11.6 months at a median follow-up of 14 months. Grade $ 3 treatment-emergent adverse events occurred in 96% of patients, most commonly neutropenia (79%), thrombocytopenia (76%), and anemia (43%). Pneumonia (10%) was the most common grade 3/4 nonhematologic event. Thrombocytopenia and bleeding (both grade 3/4 but fully reversible) occurred concomitantly in four patients. GI events, reported in 97 patients (62%), were predominantly grade 1/2 (93%); none were grade 4. CONCLUSION Melflufen plus dexamethasone showed clinically meaningful efficacy and a manageable safety profile in patients with heavily pretreated RRMM, including those with triple-class–refractory and extramedullary disease

    A process to reanalyze clinical DNA sequencing data for biomarker matching in the Lung-MAP Master Protocol.

    Get PDF
    For cancer clinical trials that require central confirmation of tumor genomic profiling, exhaustion of tissue from standard-of-care testing may prevent enrollment. For Lung-MAP, a master protocol that requires results from a defined centralized clinical trial assay to assign patients to a therapeutic substudy, we developed a process to repurpose existing commercial vendor raw genomic data for eligibility: genomic data reanalysis (GDR). Molecular results for substudy assignment were successfully generated for 369 of the first 374 patients (98.7%) using GDR for Lung-MAP, with a median time from request to result of 9 days. During the same period, 691 of 791 (87.4%) tissue samples received successfully yielded results, in a median of 14 days beyond sample acquisition. GDR is a scalable bioinformatic pipeline that expedites reanalysis of existing data for clinical trials in which validated integral biomarker testing is required for participation
    • …
    corecore