354 research outputs found
Elementary immunology: Na(+) as a regulator of immunity
The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases
On the renormalization group for the interacting massive scalar field theory in curved space
The effective action for the interacting massive scalar field in curved
space-time is derived using the heat-kernel method. Starting from this
effective action, we establish a smooth quadratic form of the low-energy
decoupling for the four-scalar coupling constant and for the nonminimal
interaction parameter. The evolution of this parameter from the conformal value
1/6 at high energies down to the IR regime is investigated within the two toy
models with negative and positive four-scalar coupling constants.Comment: LaTeX, 12 pages, 4 figure
Pseudoscalar Meson Mixing in Effective Field Theory
We show that for any effective field theory of colorless meson fields, the
mixing schemes of particle states and decay constants are not only related but
also determined exclusively by the kinetic and mass Lagrangian densities. In
the general case, these are bilinear in terms of the intrinsic fields and
involve non-diagonal kinetic and mass matrices. By applying three consecutive
steps this Lagrangian can be reduced into the standard quadratic form in terms
of the physical fields. These steps are : (i) the diagonalization of the
kinetic matrix, (ii) rescaling of the fields, and (iii) the diagonalization of
the mass matrix. In case, where the dimensions of the non-diagonal kinetic and
mass sub-matrices are respectively, and , this procedure
leads to mixing schemes which involve angles and
field rescaling parameters. This observation holds true irrespective with the
type of particle interactions presumed. The commonly used mixing schemes,
correspond to a proper choice of the kinetic and mass matrices, and are derived
as special cases. In particular, - mixing, requires one angle, if
and only if, the kinetic term with the intrinsic fields has a quadratic form.Comment: REVTeX, 6 page
How large could the R-parity violating couplings be?
We investigate in detail the predictions coming from the d=4 operators for
proton decay. We find the most general constraints for the R-parity violating
couplings coming from proton decay, taking into account all fermion mixing and
in different supersymmetric scenarios.Comment: 8 pages, several corrections, to appear in J.Phys.G (2005
Can we distinguish between h^{SM} and h^0 in split supersymmetry?
We investigate the possibility to distinguish between the Standard Model
Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out
that the best way to distinguish between these two Higgs bosons is through the
decay into two photons. It is shown that there are large differences of several
percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models,
making possible the discrimination at future photon-photon colliders. Once the
charginos are discovered at the next generation of collider experiments, the
well defined predictions for the Higgs decay into two photons will become a
cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31
(2005) 563-56
Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order
We discuss application of the physical QCD effective charge ,
defined via the heavy-quark potential, in perturbative calculations at
next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie
prescription for fixing the renormalization scales, the resulting series are
automatically and naturally scale and scheme independent, and represent
unambiguous predictions of perturbative QCD. We consider in detail such
commensurate scale relations for the annihilation ratio
and the Bjorken sum rule. In both cases the improved predictions are in
excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review
Higgs Boson Mass in Low Scale Gauge Mediation Models
We consider low scale gauge mediation models with a very light gravitino
m_{3/2}~16 eV, in the light of recent experimental hints on the Higgs boson
mass. The light gravitino is very interesting since there is no gravitino
over-production problem, but it seems difficult to explain the Higgs boson mass
of ~125 GeV. This is because of the conflict between the light gravitino mass
and heavy SUSY particle masses needed for producing the relatively heavy Higgs
boson mass. We consider two possible extensions in this paper: a singlet
extension of the Higgs sector, and strongly coupled gauge mediation. We show
that there is a large parameter space, in both scenarios, where the Higgs boson
mass of ~125 GeV is explained without any conflict with such a very light
gravitino.Comment: 23 pages, 5 figure
Electroweak pinch technique to all orders
The generalization of the pinch technique to all orders in the electroweak
sector of the Standard Model within the class of the renormalizable 't Hooft
gauges, is presented. In particular, both the all-order PT gauge-boson-- and
scalar--fermions vertices, as well as the diagonal and mixed gauge-boson and
scalar self-energies are explicitly constructed. This is achieved through the
generalization to the Standard Model of the procedure recently applied to the
QCD case, which consist of two steps: (i) the identification of special Green's
functions, which serve as a common kernel to all self-energy and vertex
diagrams, and (ii) the study of the (on-shell) Slavnov-Taylor identities they
satisfy. It is then shown that the ghost, scalar and scalar--gauge-boson
Green's functions appearing in these identities capture precisely the result of
the pinching action at arbitrary order. It turns out that the aforementioned
Green's functions play a crucial role, their net effect being the non-trivial
modification of the ghost, scalar and scalar--gauge-boson diagrams of the
gauge-boson-- or scalar--fermions vertex we have started from, in such a way as
to dynamically generate the characteristic ghost and scalar sector of the
background field method. The pinch technique gauge-boson and scalar
self-energies are also explicitly constructed by resorting to the method of the
background-quantum identities.Comment: 48 pages, 8 figures; v2: typos correcte
Resummation of the hadronic tau decay width with the modified Borel transform method
A modified Borel transform of the Adler function is used to resum the
hadronic tau decay width ratio. In contrast to the ordinary Borel transform,
the integrand of the Borel integral is renormalization--scale invariant. We use
an ansatz which explicitly accounts for the structure of the leading infrared
renormalon. Further, we use judiciously chosen conformal transformations for
the Borel variable, in order to map sufficiently away from the origin the other
ultraviolet and infrared renormalon singularities. In addition, we apply Pade
approximants for the corresponding truncated perturbation series of the
modified Borel transform, in order to further accelerate the convergence.
Comparing the results with the presently available experimental data on the tau
hadronic decay width ratio, we obtain . These predictions
virtually agree with those of our previous resummations where we used ordinary
Borel transforms instead.Comment: 32 pages, 2 eps-figures, revtex; minor changes in the formulations; a
typo in Eq.(47) corrected; version as appearing in Phys. Rev.
- …