4,069 research outputs found
Ablation sensor Patent
Ablation sensor for measuring char layer recession rate using electric wire
Grains charges in interstellar clouds
The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud
Myopic PPPs: Risk allocation and hidden liabilities for taxpayers and users
Drawing on evidence from three case studies, we show how the State's Financial Liability has worked in assigning risk in large PPP contracts in Spain. Project failure and the concessionaires' bankruptcy have resulted in the government having to assume heavy financial obligations, which have ultimately been absorbed by taxpayers and users. In contrast, Spain's leading construction companies, which were also major investors in the concessionaires, have been able to minimize their risk. Myopic PPPs have been entered into based on the transference of liabilities to taxpayers and users, and the, consequent, minimization of risks for the main private investors
Effect of the enzymatic inhibitor of Kunitz on the gastric lesions from reserpine, from phenylbutazone, from pyloric ligation and by restraint in the rat
The protective effects of certain polypeptides on gastric ulcerations caused from reserpine and phenylbutazone in the rate were studied. It was found that the Kunitz enzymatic inhibitor exerts a protective action in regard to gastric lesions. However, the inhibitor did not change the development of Shay ulcers and stress ulcers from restraint
Grid-scale Fluctuations and Forecast Error in Wind Power
The fluctuations in wind power entering an electrical grid (Irish grid) were
analyzed and found to exhibit correlated fluctuations with a self-similar
structure, a signature of large-scale correlations in atmospheric turbulence.
The statistical structure of temporal correlations for fluctuations in
generated and forecast time series was used to quantify two types of forecast
error: a timescale error () that quantifies the deviations between
the high frequency components of the forecast and the generated time series,
and a scaling error () that quantifies the degree to which the
models fail to predict temporal correlations in the fluctuations of the
generated power. With no knowledge of the forecast models, we
suggest a simple memory kernel that reduces both the timescale error
() and the scaling error ()
Electromagnetic radiation produces frame dragging
It is shown that for a generic electrovacuum spacetime, electromagnetic
radiation produces vorticity of worldlines of observers in a Bondi--Sachs
frame. Such an effect (and the ensuing gyroscope precession with respect to the
lattice) which is a reminiscence of generation of vorticity by gravitational
radiation, may be linked to the nonvanishing of components of the Poynting and
the super--Poynting vectors on the planes othogonal to the vorticity vector.
The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review
Bel-Robinson tensor and dominant energy property in the Bianchi type I Universe
Within the framework of Bianchi type-I space-time we study the Bel-Robinson
tensor and its impact on the evolution of the Universe. We use different
definitions of the Bel-Robinson tensor existing in the literature and compare
the results. Finally we investigate the so called "dominant super-energy
property" for the Bel-Robinson tensor as a generalization of the usual dominant
energy condition for energy momentum tensors.
Keywords: Bianchi type I model, super-energy tensors
Pacs: 03.65.Pm and 04.20.HaComment: 15 pages, revised version, no figure
Ergodicity Breaking in a Deterministic Dynamical System
The concept of weak ergodicity breaking is defined and studied in the context
of deterministic dynamics. We show that weak ergodicity breaking describes a
weakly chaotic dynamical system: a nonlinear map which generates subdiffusion
deterministically. In the non-ergodic phase non-trivial distribution of the
fraction of occupation times is obtained. The visitation fraction remains
uniform even in the non-ergodic phase. In this sense the non-ergodicity is
quantified, leading to a statistical mechanical description of the system even
though it is not ergodic.Comment: 11 pages, 4 figure
Why does gravitational radiation produce vorticity?
We calculate the vorticity of world--lines of observers at rest in a
Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs
metric. We claim that such an effect is related to the super--Poynting vector,
in a similar way as the existence of the electromagnetic Poynting vector is
related to the vorticity in stationary electrovacum spacetimes.Comment: 9 pages; to appear in Classical and Quantum Gravit
Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1
Because of their inherently high flux allowing the detection of clear
signals, black hole X-ray binaries are interesting candidates for polarization
studies, even if no polarization signals have been observed from them before.
Such measurements would provide further detailed insight into these sources'
emission mechanisms. We measured the polarization of the gamma-ray emission
from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope.
Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV
data are consistent with emission dominated by Compton scattering on thermal
electrons and are weakly polarized. The second spectral component seen in the
400keV-2MeV band is by contrast strongly polarized, revealing that the MeV
emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011,
available on Science Express Web site (March 24th edition
- …