214 research outputs found

    Interactive manipulation of microparticles in an octagonal sonotweezer

    Get PDF
    An ultrasonic device for micro-patterning and precision manipulation of micrometre-scale particles is demonstrated. The device is formed using eight piezoelectric transducers shaped into an octagonal cavity. By exciting combinations of transducers simultaneously, with a controlled phase delay between them, different acoustic landscapes can be created, patterning micro-particles into lines, squares, and more complex shapes. When operated with all eight transducers the device can, with appropriate phase control, manipulate the two dimensional acoustic pressure gradient; it thus has the ability to position and translate a single tweezing zone to different locations on a surface in a precise and programmable manner

    A colorimetric CMOS-based platform for rapid total serum cholesterol quantification

    Get PDF
    Elevated cholesterol levels are associated with a greater risk of developing cardiovascular disease and other illnesses, making it a prime candidate for detection on a disposable biosensor for rapid point of care diagnostics. One of the methods to quantify cholesterol levels in human blood serum uses an optically mediated enzyme assay and a bench top spectrophotometer. The bulkiness and power hungry nature of the equipment limits its usage to laboratories. Here, we present a new disposable sensing platform that is based on a complementary metal oxide semiconductor process for total cholesterol quantification in pure blood serum. The platform that we implemented comprises readily mass-manufacturable components that exploit colorimetric changes of cholesterol oxidase and cholesterol esterase reactions. We have shown that our quantification results are comparable to that obtained by a bench top spectrophotometer. Using the implemented device, we have measured cholesterol concentration in human blood serum as low as 29 μM with a limit of detection at 13 μM, which is approximately 400 times lower than average physiological range, implying that our device also has the potential to be used for applications that require greater sensitivity

    Capsule endoscopy compatible fluorescence imager demonstrated using bowel cancer tumours

    Get PDF
    We demonstrate a proof of concept highly miniaturised fluorescence imager and its application to detecting cancer in resected human colon cancer tissues. Fluorescence imaging modalities have already been successfully implemented in traditional endoscopy. However, the procedure still causes discomfort and requires sedation. Wireless fluorescence capsule endoscopy has the potential to improve diagnostic accuracy with less inconvenience for patients. In this paper we present a 5 mm x 6 mm x 5 mm optical block that is small enough to integrate into a capsule endoscope. The block integrates ultrathin filters for optical isolation and was successfully integrated with a sensitive CMOS SPAD array to detect green fluorescence from Flavin Adenine Dinucleotide (FAD), which is an endogenous fluorophore responsible for autofluorescence in human tissues, and fluorescence from the cancer selective molecular probe ProteoGREENTM-gGlu used to label colorectal cancer cells. In vitro studies were validated using a commercial ModulusTM Microplate reader. The potential use of the device in capsule endoscopy was further validated by imaging healthy and malignant resected human tissues from the colon to detect changes in autofluorescence signal that are crucial for cancer diagnosis

    The Multicorder: A Handheld Multimodal Metabolomics-on-CMOS Sensing Platform

    Get PDF
    The use of CMOS platforms in medical point-of-care applications, by integrating all steps from sample to data output, has the potential to reduce the diagnostic cost and the time from days to seconds. Here we present the `Multicorder' technology, a handheld versatile multimodal platform for rapid metabolites quantification. The current platform is composed of a cartridge, a reader and a graphic user interface. The sensing core of the cartridge is the CMOS chip which integrates a 16×16 array of multi-sensor elements. Each element is composed of two optical and one chemical sensor. The platform is therefore capable of performing multi-mode measurements: namely colorimetric, chemiluminescence, pH sensing and surface plasmon resonance. In addition to the reader that is employed for addressing, data digitization and transmission, a tablet computer performs data collection, visualization, analysis and storage. In this paper, we demonstrate colorimetric, chemiluminescence and pH sensing on the same platform by on-chip quantification of different metabolites in their physiological range. The platform we have developed has the potential to lead the way to a new generation of commercial devices in the footsteps of the current commercial glucometers for quick multi-metabolite quantification for both acute and chronic medicines

    Multimodal integrated sensor platform for rapid biomarker detection

    Get PDF
    Precision metabolomics and quantification for cost-effective, rapid diagnosis of disease are key goals in personalized medicine and point-of-care testing. Presently, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single CMOS chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array, with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bioassays performed on-chip for glucose, cholesterol, urea and urate, each within their naturally occurring physiological range

    A Core Curriculum in the Biological and Biomedical Sciences for Dentistry

    Get PDF
    INTRODUCTION: The biomedical sciences (BMS) are a central part of the dental curriculum that underpins teaching and clinical practice in all areas of dentistry. Although some specialist groups have proposed curricula in their particular topic areas, there is currently no overarching view of what should be included in a BMS curriculum for undergraduate dental programmes. To address this, the Association for Dental Education in Europe (ADEE) convened a Special Interest Group (SIG) with representatives from across Europe to develop a consensus BMS curriculum for dental programmes. CURRICULUM: This paper summarises the outcome of the deliberations of this SIG and details a consensus view from the SIG of what a BMS curriculum should include. CONCLUSIONS: Given the broad nature of BMS applied to dentistry, this curriculum framework is advisory and seeks to provide programme planners with an indicative list of topics which can be mapped to specific learning objectives within their own curricula. As dentistry becomes increasingly specialised, these will change, or some elements of the undergraduate curriculum may move to the post-graduate setting. So, this document should be seen as a beginning and it will need regular review as BMS curricula in dentistry evolve

    Latherin: A Surfactant Protein of Horse Sweat and Saliva

    Get PDF
    Horses are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein. The amino acid sequence of latherin, determined from cDNA analysis, is highly conserved across four geographically dispersed equid species (horse, zebra, onager, ass), and is similar to a family of proteins only found previously in the oral cavity and associated tissues of mammals. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg ml−1), and therefore probably acts as a wetting agent to facilitate evaporative cooling through a waterproofed pelt. Neutron reflection experiments indicate that this detergent-like activity is associated with the formation of a dense protein layer, about 10 Å thick, at the air-water interface. However, biophysical characterization (circular dichroism, differential scanning calorimetry) in solution shows that latherin behaves like a typical globular protein, although with unusual intrinsic fluorescence characteristics, suggesting that significant conformational change or unfolding of the protein is required for assembly of the air-water interfacial layer. RT-PCR screening revealed latherin transcripts in horse skin and salivary gland but in no other tissues. Recombinant latherin produced in bacteria was also found to be the target of IgE antibody from horse-allergic subjects. Equids therefore may have adapted an oral/salivary mucosal protein for two purposes peculiar to their lifestyle, namely their need for rapid and efficient heat dissipation and their specialisation for masticating and processing large quantities of dry food material
    • …
    corecore