1,781 research outputs found
High energy extension of the FLUKA atmospheric neutrino flux
The atmospheric neutrino flux calculated with FLUKA was originally limited to
100-200 GeV for statistical reasons. In order to make it available for the
analysis of high energy events, like upward through-going muons detected by
neutrino telescopes, we have extended the calculation so to provide a reliable
neutrino yield per primary nucleon up to about 10**6 GeV/nucleon, as far as the
interaction model is concerned. We point out that the primary flux model above
100 GeV/nucleon still contributes with an important systematic error to the
neutrino flux.Comment: Extended version (10 pages) of the contribution to ICRC 2003, with
the addition of flux table
Atmospheric neutrinos in a Large Liquid Argon detector
In view of the evaluation of the physics goals of a large Liquid Argon TPC,
evolving from the ICARUS technology, we have studied the possibility of
performing precision measurements on atmospheric neutrinos. For this purpose we
have improved existing Monte Carlo neutrino event generators based on FLUKA and
NUX by including the 3-flavor oscillation formalism and the numerical treatment
of Earth matter effects. By means of these tools we have studied the
sensitivity in the measurement of Theta(23) through the accurate measurement of
electron neutrinos. The updated values for Delta m^2(23) from Super-Kamiokande
and the mixing parameters as obtained by solar and KamLand experiments have
been used as reference input, while different values of Theta(13) have been
considered. An exposure larger than 500 kton yr seems necessary in order to
achieve a significant result, provided that the present knowledge of systematic
uncertainties is largely improved.Comment: Talk given at the worksgop "Cryogenic Liquid Detectors for Future
Particle Physics", LNGS (Italy) March 13th-14th, 200
The FLUKA Monte Carlo, non-perturbative QCD and Cosmic Ray cascades
The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains
packages to sample soft hadronic processes which are built according to the
Dual Parton Model. This is a phenomenological model capable of reproducing many
of the features of hadronic collisions in the non perturbative QCD regime. The
basic principles of the model are summarized and, as an example, the associated
Lambda-K production is discussed. This is a process which has some relevance
for the calculation of atmospheric neutrino fluxes.Comment: Extended version of the work for the proceedings of the workshop on
QCD at Cosmic Ray Energies, Erice, Aug. 30 - Sep. 4 2004, Ital
A 3-Dimensional Calculation of Atmospheric Neutrino Flux
An extensive 3-dimensional Monte Carlo calculation of the atmospheric
neutrino flux is in progress with the FLUKA Monte Carlo code. The results are
compared to those obtained under the 1-dimensional approximation, where
secondary particles and decay products are assumed to be collinear to the
primary cosmic ray, as usually done in most of the already existing flux
calculations. It is shown that the collinear approximation gives rise to a
wrong angular distribution of neutrinos, essentially in the Sub-GeV region.
However, the angular smearing introduced by the experimental inability of
detecting recoils in neutrino interactions with nuclei is large enough to wash
out, in practice, most of the differences between 3-dimensional and
1-dimensional flux calculations. Therefore, the use of the collinear
approximation should have not introduced a significant bias in the
determination of the flavor oscillation parameters in current experiments.Comment: 27 pages, 14 figures. To be submitted to Astroparticle Physics. To be
submitted to Astroparticle Physic
Final State Interactions Effects in Neutrino-Nucleus Interactions
Final State Interactions effects are discussed in the context of Monte Carlo
simulations of neutrino-nucleus interactions. A role of Formation Time is
explained and several models describing this effect are compared. Various
observables which are sensitive to FSI effects are reviewed including
pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte
Carlo neutrino event generator is described and its ability to understand
neutral current production data in GeV neutrino flux
experiments is demonstrated.Comment: 13 pages, 16 figure
Tests of the Standard Model with Low-Energy Neutrino Beams
We discuss the possibility of using future high--intensity low--energy neutrino beams for precision tests of the Standard Model. In particular we consider the determination of the electroweak mixing angle from elastic and quasi--elastic neutrino--nucleon scattering at a superbeam or --beam
The RASSCALS: An X-ray and Optical Study of 260 Galaxy Groups
We describe the ROSAT All-Sky Survey-Center for Astrophysics Loose Systems
(RASSCALS), the largest X-ray and optical survey of low mass galaxy groups to
date. We draw 260 groups from the combined Center for Astrophysics and Southern
Sky Redshift Surveys, covering one quarter of the sky to a limiting Zwicky
magnitude of 15.5. We detect 61 groups (23%) as extended X-ray sources.
The statistical completeness of the sample allows us to make the first
measurement of the X-ray selection function of groups, along with a clean
determination of their fundamental scaling laws. We find robust evidence of
similarity breaking in the relationship between the X-ray luminosity and
velocity dispersion. Groups with sigma < 340 km/s are overluminous by several
orders of magnitude compared to the familiar LX ~ sigma^4 law for higher
velocity dispersion systems. An understanding of this break depends on the
detailed structure of groups with small velocity dispersions sigma < 150 km/s.Comment: 16 pages, including 6 figures. To appear in The Astrophysical Journa
A neutrino-nucleon interaction generator for the FLUKA Monte Carlo code
Event generators that handle neutrino-nucleon interaction have been developed for the FLUKA code [1]. In earlier FLUKA versions only quasi-elastic (QEL) interactions were included, and the code relied on external event generators for the resonance (RES) and deep inelastic scattering (DIS). The new DIS+RES event generator is fully integrated in FLUKA and uses the same hadronization routines as those used for simulating hadron-nucleon interactions. Nuclear effects in neutrino-nucleus interactions are simulated within the same framework as in the FLUKA hadron-nucleus interaction model (PEANUT), thus profiting from its detailed physics modelling and longstanding benchmarking. The generators are available in the standard FLUKA distribution. They are presently under development and several improvements are planned to be implemented. The physics relevant to the neutrino-nucleon interactions and the results of comparisons with experimental data are discussed
- âŠ