9,082 research outputs found
Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider
We study direct production of charginos and neutralinos at the CERN Large
Hadron Collider. We simulate all channels of chargino and neutralino production
using ISAJET 7.07. The best mode for observing such processes appears to be
pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and
background levels, and suggest cuts to optimize the signal. The trilepton mode
should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay
modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling
the signal. In the first case, the leptonic branching fraction for decay is
small and additional background from is present, while in the second case,
the trilepton signal is essentially absent. For smaller values of ,
the trilepton signal should be visible above background, especially if
and m_{\tell}\ll m_{\tq}, in which case the leptonic
decays of \tz_2 are enhanced. Distributions in dilepton mass
can yield direct information on neutralino masses due to
the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may
lead to an additional constraint amongst the chargino and neutralino masses are
also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX)
plus 7 uuencoded figures attache
LHC discovery potential for supersymmetry with \sqrt{s}=7 TeV and 5-30 fb^{-1}
We extend our earlier results delineating the supersymmetry (SUSY) reach of
the CERN Large Hadron Collider operating at a centre-of-mass energy \sqrt{s}=7
TeV to integrated luminosities in the range 5 - 30 fb^{-1}. Our results are
presented within the paradigm minimal supergravity model (mSUGRA or CMSSM).
Using a 6-dimensional grid of cuts for the optimization of signal to background
ratio -- including missing E_T-- we find for m(gluino) \sim m(squark) an LHC
5\sigma SUSY discovery reach of m(gluino) \sim 1.3,\ 1.4,\ 1.5 and 1.6 TeV for
5, 10, 20 and 30 fb^{-1}, respectively. For m(squark)>> m(gluino), the
corresponding reach is instead m(gluino)\sim 0.8,\ 0.9,\ 1.0 and 1.05 TeV, for
the same integrated luminosities.Comment: 7 pages with 2 .eps figure. In version 2, a new figure has been added
along with associated discussio
Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass
We observe that in SUSY models with non-universal GUT scale gaugino mass
parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified
value results in a smaller value of -m_{H_u}^2 at the weak scale. By the
electroweak symmetry breaking conditions, this implies a reduced value of \mu^2
{\it vis \`a vis} models with gaugino mass unification. The lightest neutralino
can then be mixed Higgsino dark matter with a relic density in agreement with
the measured abundance of cold dark matter (DM). We explore the phenomenology
of this high |M_2| DM model. The spectrum is characterized by a very large wino
mass and a concomitantly large splitting between left- and right- sfermion
masses. In addition, the lighter chargino and three light neutralinos are
relatively light with substantial higgsino components. The higgsino content of
the LSP implies large rates for direct detection of neutralino dark matter, and
enhanced rates for its indirect detection relative to mSUGRA. We find that
experiments at the LHC should be able to discover SUSY over the portion of
parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark
mass, while a 1 TeV electron-positron collider has a reach comparable to that
of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt
events at the LHC will likely show more than one mass edge, while its shape
should provide indirect evidence for the large higgsino content of the decaying
neutralinos.Comment: 36 pages with 26 eps figure
Supersymmetry Reach of Tevatron Upgrades: The Large Case
The Yukawa couplings of the tau lepton and the bottom quark become comparable
to, or even exceed, electroweak gauge couplings for large values of the SUSY
parameter . As a result, the lightest tau slepton \ttau_1 and
bottom squark \tb_1 can be significantly lighter than corresponding sleptons
and squarks of the first two generations. Gluino, chargino and neutralino
decays to third generation particles are significantly enhanced when
is large. This affects projections for collider experiment reach
for supersymmetric particles. In this paper, we evaluate the reach of the
Fermilab Tevatron collider for supersymmetric signals in the
framework of the mSUGRA model. We find that the reach via signatures with
multiple isolated leptons ( and ) is considerably reduced. For very
large , the greatest reach is attained in the multi-jet+\eslt
signature. Some significant extra regions may be probed by requiring the
presence of an identified -jet in jets+\eslt events, or by requiring one
of the identified leptons in clean trilepton events to actually be a hadronic 1
or 3 charged prong tau. In an appendix, we present formulae for chargino,
neutralino and gluino three body decays which are valid at large .Comment: 31 page Revtex file including 10 PS figure
Implications of Compressed Supersymmetry for Collider and Dark Matter Searches
Martin has proposed a scenario dubbed ``compressed supersymmetry'' (SUSY)
where the MSSM is the effective field theory between energy scales M_{\rm weak}
and M_{\rm GUT}, but with the GUT scale SU(3) gaugino mass M_3<< M_1 or M_2. As
a result, squark and gluino masses are suppressed relative to slepton, chargino
and neutralino masses, leading to a compressed sparticle mass spectrum, and
where the dark matter relic density in the early universe may be dominantly
governed by neutralino annihilation into ttbar pairs via exchange of a light
top squark. We explore the dark matter and collider signals expected from
compressed SUSY for two distinct model lines with differing assumptions about
GUT scale gaugino mass parameters. For dark matter signals, the compressed
squark spectrum leads to an enhancement in direct detection rates compared to
models with unified gaugino masses. Meanwhile, neutralino halo annihilation
rates to gamma rays and anti-matter are also enhanced relative to related
scenarios with unified gaugino masses but, depending on the halo dark matter
distribution, may yet be below the sensitivity of indirect searches underway.
In the case of collider signals, we compare the rates for the potentially
dominant decay modes of the stop_1 which may be expected to be produced in
cascade decay chains at the LHC: \tst_1\to c\tz_1 and \tst_1\to bW\tz_1. We
examine the extent to which multilepton signal rates are reduced when the
two-body decay mode dominates. For the model lines that we examine here, the
multi-lepton signals, though reduced, still remain observable at the LHC.Comment: 22 pages including 24 eps figure
Supersymmetry discovery potential of the LHC at 10 and 14 TeV without and with missing
We examine the supersymmetry (SUSY) reach of the CERN LHC operating at
and 14 TeV within the framework of the minimal supergravity
model. We improve upon previous reach projections by incorporating updated
background calculations including a variety of Standard Model (SM)
processes. We show that SUSY discovery is possible even before the detectors
are understood well enough to utilize either or electrons in
the signal. We evaluate the early SUSY reach of the LHC at TeV by
examining multi-muon plus jets and also dijet events with {\it no}
missing cuts and show that the greatest reach in terms of
occurs in the dijet channel. The reach in multi-muons is slightly smaller in
, but extends to higher values of . We find that an observable
multi-muon signal will first appear in the opposite-sign dimuon channel, but as
the integrated luminosity increases the relatively background-free but
rate-limited same-sign dimuon, and ultimately the trimuon channel yield the
highest reach. We show characteristic distributions in these channels that
serve to distinguish the signal from the SM background, and also help to
corroborate its SUSY origin. We then evaluate the LHC reach in various
no-lepton and multi-lepton plus jets channels {\it including} missing
cuts for and 14 TeV, and plot the reach for integrated
luminosities ranging up to 3000 fb at the SLHC. For TeV,
the LHC reach extends to and 2.9 TeV for
and integrated luminosities of 10, 100, 1000 and
3000 fb, respectively. For TeV, the LHC reach for the same
integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for
ab^-1 integrated luminosities, with minor corrections of references and text.
2 figures added. To appear in JHE
Model Independent Approach to Focus Point Supersymmetry: from Dark Matter to Collider Searches
The focus point region of supersymmetric models is compelling in that it
simultaneously features low fine-tuning, provides a decoupling solution to the
SUSY flavor and CP problems, suppresses proton decay rates and can accommodate
the WMAP measured cold dark matter (DM) relic density through a mixed
bino-higgsino dark matter particle. We present the focus point region in terms
of a weak scale parameterization, which allows for a relatively model
independent compilation of phenomenological constraints and prospects. We
present direct and indirect neutralino dark matter detection rates for two
different halo density profiles, and show that prospects for direct DM
detection and indirect detection via neutrino telescopes such as IceCube and
anti-deuteron searches by GAPS are especially promising. We also present LHC
reach prospects via gluino and squark cascade decay searches, and also via
clean trilepton signatures arising from chargino-neutralino production. Both
methods provide a reach out to m_{\tg}\sim 1.7 TeV. At a TeV-scale linear
e^+e^- collider (LC), the maximal reach is attained in the \tz_1\tz_2 or
\tz_1\tz_3 channels. In the DM allowed region of parameter space, a
\sqrt{s}=0.5 TeV LC has a reach which is comparable to that of the LHC.
However, the reach of a 1 TeV LC extends out to m_{\tg}\sim 3.5 TeV.Comment: 34 pages plus 36 eps figure
Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB
Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB)
generally give rise to a neutral wino as a WIMP cold dark matter (CDM)
candidate, whose thermal abundance is well below measured values. Here, we
investigate four scenarios to reconcile AMSB dark matter with the measured
abundance: 1. non-thermal wino production due to decays of scalar fields ({\it
e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3.
non-thermal wino production due to heavy axino decays, and 4. the case of an
axino LSP, where the bulk of CDM is made up of axions and thermally produced
axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured
DM abundance, and we investigate wino-like WIMP direct and indirect detection
rates. Wino direct detection rates can be large, and more importantly, are
bounded from below, so that ton-scale noble liquid detectors should access all
of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via
neutrino telescopes and space-based cosmic ray detectors can also be large. In
case 3, the DM would consist of an axion plus wino admixture, whose exact
proportions are very model dependent. In this case, it is possible that both an
axion and a wino-like WIMP could be detected experimentally. In case 4., we
calculate the re-heat temperature of the universe after inflation. In this
case, no direct or indirect WIMP signals should be seen, although direct
detection of relic axions may be possible. For each DM scenario, we show
results for the minimal AMSB model, as well as for the hypercharged and gaugino
AMSB models.Comment: 29 pages including 13 figure
SUPERSYMMETRY REACH OF AN UPGRADED TEVATRON COLLIDER
We examine the capability of a TeV Tevatron collider
to discover supersymmetry, given a luminosity upgrade to amass of
data. We compare with the corresponding reach of the Tevatron Main Injector
( of data). Working within the framework of minimal supergravity
with gauge coupling unification and radiative electroweak symmetry breaking, we
first calculate the regions of parameter space accessible via the clean
trilepton signal from \tw_1\tz_2\to 3\ell +\eslt production, with detailed
event generation of both signal and major physics backgrounds. The trilepton
signal can allow equivalent gluino masses of up to GeV to
be probed if is small. If is large, then GeV can
be probed for and large values of , the
rate for \tz_2\to\tz_1\ell\bar{\ell} is suppressed by interference effects,
and there is {\it no} reach in this channel. We also examine regions where the
signal from \tw_1\overline{\tw_1}\to \ell\bar{\ell}+\eslt is detectable.
Although this signal is background limited, it is observable in some regions
where the clean trilepton signal is too small. Finally, the signal
\tw_1\tz_2\to jets+\ell\bar{\ell} +\eslt can confirm the clean trilepton
signal in a substantial subset of the parameter space where the trilepton
signal can be seen. We note that although the clean trilepton signal may allow
Tevatron experiments to identify signals in regions of parameter space beyond
the reach of LEP II, the dilepton channels generally probe much the same region
as LEP II.Comment: 19 page REVTEX file; a uuencoded PS file with PS figures is available
via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950301.u
Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider
While the SUSY flavor, CP and gravitino problems seem to favor a very heavy
spectrum of matter scalars, fine-tuning in the electroweak sector prefers low
values of superpotential mass \mu. In the limit of low \mu, the two lightest
neutralinos and light chargino are higgsino-like. The light charginos and
neutralinos may have large production cross sections at LHC, but since they are
nearly mass degenerate, there is only small energy release in three-body
sparticle decays. Possible dilepton and trilepton signatures are difficult to
observe after mild cuts due to the very soft p_T spectrum of the final state
isolated leptons. Thus, the higgsino-world scenario can easily elude standard
SUSY searches at the LHC. It should motivate experimental searches to focus on
dimuon and trimuon production at the very lowest p_T(\mu) values possible. If
the neutralino relic abundance is enhanced via non-standard cosmological dark
matter production, then there exist excellent prospects for direct or indirect
detection of higgsino-like WIMPs. While the higgsino-world scenario may easily
hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider
operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access
the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure
- …