175,931 research outputs found

    A Note on Pretzelosity TMD Parton Distribution

    Full text link
    We show that the transverse-momentum-dependent parton distribution, called as Pretzelosity function, is zero at any order in perturbation theory of QCD for a single massless quark state. This implies that Pretzelosity function is not factorized with the collinear transversity parton distribution at twist-2, when the struck quark has a large transverse momentum. Pretzelosity function is in fact related to collinear parton distributions defined with twist-4 operators. In reality, Pretzelosity function of a hadron as a bound state of quarks and gluons is not zero. Through an explicit calculation of Pretzelosity function of a quark combined with a gluon nonzero result is found.Comment: improved explanation, published version in Phys. Lett.

    Privacy in Inter-Vehicular Networks: Why simple pseudonym change is not enough

    Get PDF
    Inter-vehicle communication (IVC) systems disclose rich location information about vehicles. State-of-the-art security architectures are aware of the problem and provide privacy enhancing mechanisms, notably pseudonymous authentication. However, the granularity and the amount of location information IVC protocols divulge, enable an adversary that eavesdrops all traffic throughout an area, to reconstruct long traces of the whereabouts of the majority of vehicles within the same area. Our analysis in this paper confirms the existence of this kind of threat. As a result, it is questionable if strong location privacy is achievable in IVC systems against a powerful adversary.\u

    Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach

    Full text link
    An extension to the classical FPV model is developed for transcritical real-fluid combustion simulations in the context of finite volume, fully compressible, explicit solvers. A double-flux model is developed for transcritical flows to eliminate the spurious pressure oscillations. A hybrid scheme with entropy-stable flux correction is formulated to robustly represent large density ratios. The thermodynamics for ideal-gas values is modeled by a linearized specific heat ratio model. Parameters needed for the cubic EoS are pre-tabulated for the evaluation of departure functions and a quadratic expression is used to recover the attraction parameter. The novelty of the proposed approach lies in the ability to account for pressure and temperature variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases are performed to demonstrate the capability of the proposed approach in multidimensional simulations. The proposed combustion model and numerical schemes are directly applicable for LES simulations of real applications under transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T

    Mark 3 interactive data analysis system

    Get PDF
    The interactive data analysis system, a major subset of the total Mark 3 very long baseline interferometry (VLBI) software system is described. The system consists of two major and a number of small programs. These programs provide for the scientific analysis of the observed values of delay and delay rate generated by the VLBI data reduction programs and product the geophysical and astrometric parameters which are among the ultimate products of VLBI. The two major programs are CALC and SOLVE. CALC generates the theoretical values of VLBI delay rate as well as partial derivatives based on apriori values of the geophysical and astronometric parameters. SOLVE is a least squares parameters estimation program which yields the geophysical and astrometric parameters using the observed values by the data processing system and theoretical values and partial derivatives provided by CALC. SOLVE is a highly interactive program in which the user selects the exact form of the recovered parameters and the data to be accepted into the solution

    Melosh rotation: source of the proton's missing spin

    Full text link
    It is shown that the observed small value of the integrated spin structure function for protons could be naturally understood within the naive quark model by considering the effect from Melosh rotation. The key to this problem lies in the fact that the deep inelastic process probes the light-cone quarks rather than the instant-form quarks, and that the spin of the proton is the sum of the Melosh rotated light-cone spin of the individual quarks rather than simply the sum of the light-cone spin of the quarks directly.Comment: 5 latex page

    A Study of Gluon Propagator on Coarse Lattice

    Get PDF
    We study gluon propagator in Landau gauge with lattice QCD, where we use an improved lattice action. The calculation of gluon propagator is performed on lattices with the lattice spacing from 0.40 fm to 0.24 fm and with the lattice volume from (2.40fm)4(2.40 fm)^4 to (4.0fm)4(4.0 fm)^4. We try to fit our results by two different ways, in the first one we interpret the calculated gluon propagators as a function of the continuum momentum, while in the second we interpret the propagators as a function of the lattice momentum. In the both we use models which are the same in continuum limit. A qualitative agreement between two fittings is found.Comment: Revtex 14pages, 11 figure
    corecore