354 research outputs found

    HST NICMOS Imaging of the Planetary-mass Companion to the Young Brown Dwarf 2MASS J1207334-393254

    Get PDF
    Multi-band (0.9 to 1.6 um) images of the TW Hydrae Association (TWA) brown dwarf, 2MASS J1207334-393254 (also known as 2M1207), and its candidate planetary mass companion (2M1207b) were obtained on 2004 Aug 28 and 2005 Apr 26 with HST/NICMOS. The images from these two epochs unequivocally confirm the two objects as a common proper motion pair (16.0 sigma confidence). A new measurement of the proper motion of 2M1207 implies a distance to the system of 59+-7 pc and a projected separation of 46+-5 AU. The NICMOS and previously published VLT photometry of 2M1207b, extending overall from 0.9 to 3.8 um, are fully consistent with an object of a few Jupiter masses at the canonical age of a TWA member (~8 Myr) based on evolutionary models of young giant planets. These observations provide information on the physical nature of 2M1207b and unambiguously establish that the first direct image of a planetary mass companion in orbit around a self-luminous body, other than our Sun, has been secured.Comment: 18 pages, 3 figures, 3 tables. Accepted in Ap

    Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations

    Get PDF
    Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble. Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth. Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU

    Adaptive optics imaging survey of the Tucana-Horologium association

    Full text link
    We present the results of an adaptive optics (AO) imaging survey of the common associations of Tucana and Horologium, carried out at the ESO 3.6m telescope with the ADONIS/SHARPII system. Based on our observations of two dozen probable association members, HIP 1910 and HIP 108422 appear to have low-mass stellar companions, while HIP 6856 and GSC 8047-0232 have possible sub-stellar candidate companions. Astrometric measurements, performed in November 2000 and October 2001, indicate that HIP 1910 B likely is bound to its primary, but are inconclusive in the case of the candidate companion to HIP 6856. Additional observations are needed to confirm the HIP 6856 companionship as well as for HIP 108422 and GSC 8047-0232.Comment: 7 pages, 4 figures postscript. A&A accepte

    HD 77407 and GJ 577: two new young stellar binaries detected with the Calar Alto Adaptive Optics system ALFA

    Get PDF
    We present the first results from our search for close stellar and sub-stellar companions to young nearby stars on the northern sky. Our infrared imaging observations are obtained with the 3.5 m Calar Alto telescope and the AO system ALFA. With two epoch observations which were separated by about one year, we found two co-moving companion candidates, one close to HD 77407 and one close to GJ 577. For the companion candidate near GJ 577, we obtained an optical spectrum showing spectral type M4.5; this candidate is a bound low-mass stellar companion confirmed by both proper motion and spectroscopy. We estimate the masses for HD 77407 B and GJ 577 B to be ~0.3 to 0.5 Msun and ~0.16 to 0.2 Msun, respectively. Compared to Siess al.(2000) models, each of the two pairs appears co-eval with HD 77407 A,B being 10 to 40 Myrs old and GJ 577 A,B being older than 100 Myrs. We also took multi-epoch high-resolution spectra of HD 77407 to search for sub-stellar companions, but did not find any with 3 Mjup as upper mass (msin(i)) limit (for up to 4 year orbits); however, we detected a long-term radial velocity trend in HD 77407 A, consistent with a ~ 0.3 Msun companion at ~ 50 AU separation, i.e. the one detected by the imaging. Hence, HD 77407 B is confirmed to be a bound companion to HD 77407 A. We also present limits for undetected, but detectable companions using a deep image of HD 77407 A and B, also observed with the Keck NIRC2 AO system; any brown dwarfs were detectable outside of 0.5 arcsec (17 AU at HD 77407), giant planets with masses from ~ 6.5 to 12 Mjup were detectable at > 1.5 arcsec.Comment: in pres

    Cloud Atlas: High-precision HST/WFC3/IR Time-resolved Observations of Directly Imaged Exoplanet HD 106906b

    Get PDF
    HD 106906b is an ~11M_(Jup), ~15 Myr old directly imaged exoplanet orbiting at an extremely large distance from its host star. The wide separation (7 11) between HD 106906b and its host star greatly reduces the difficulty in direct-imaging observations, making it one of the most favorable directly imaged exoplanets for detailed characterization. In this paper, we present HST/WFC3/IR time-resolved observations of HD 106906b in the F127M, F139M, and F153M bands. We have achieved ~1% precision in the lightcurves in all three bands. The F127M lightcurve demonstrates marginally detectable (2.7σ significance) variability with a best-fitting period of 4 hr, while the lightcurves in the other two bands are consistent with flat lines. We construct primary-subtracted deep images and use these images to exclude additional companions to HD 106906 that are more massive than 4 M_(Jup) and locate at projected distances of more than ~500 au. We measure the astrometry of HD 106906b in two HST/WFC3 epochs and achieve precisions better than 2.5 mas. The position angle and separation measurements do not deviate from those in the 2004 HST/ACS/HRC images for more than 1σ uncertainty. We provide the HST/WFC3 astrometric results for 25 background stars that can be used as reference sources in future precision astrometry studies. Our observations also provide the first 1.4 μm water band photometric measurement for HD 106906b. HD 106906b's spectral energy distribution and the best-fitting BT-Settl model have an inconsistency in the 1.4 μm water absorption band, which highlights the challenges in modeling atmospheres of young planetary-mass objects

    Cloud Atlas: Weak Color Modulations Due to Rotation in the Planetary-mass Companion GU Psc b and 11 Other Brown Dwarfs

    Get PDF
    Among the greatest challenges in understanding ultracool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b—a rare mid-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the Hubble Space Telescope/WFC3 1.1–1.67 μm time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7% and a minimum period of 8 h. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1 and 1.67 μm. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in J − H color with increasing J-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations

    The Circumstellar Disk of HD 141569 Imaged with NICMOS

    Get PDF
    Coronagraphic imaging with the Near Infrared Camera and Multi Object Spectrometer on the Hubble Space Telescope reveals a large, ~400 AU (4'') radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 micron shows the disk oriented at a position angle of 356 +/- 5 deg and inclined to our line of sight by 51 +/- 3 deg; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1.''85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology.Comment: 4 pages, LaTeX with emulateapj.sty and epsfig.sty, 4 postscript figures, Accepted to ApJ Letter

    A Sensitive Search for Variability in Late L Dwarfs: The Quest for Weather

    Get PDF
    We have conducted a photometric monitoring program of three field late L brown dwarfs (DENIS-P J0255-4700, 2MASS J0908+5032, and 2MASS J2244+2043) looking for evidence of nonaxisymmetric structure or temporal variability in their photospheres. The observations were performed using Spitzer IRAC 4.5 and 8 μm bandpasses and were designed to cover at least one rotational period of each object; 1 σ rms uncertainties of less than 3 mmag at 4.5 μm and around 9 mmag at 8 μm were achieved. Two out of the three objects studied exhibit some modulation in their light curves at 4.5 μm—but not 8 μm—with periods of 7.4 hr (DENIS 0255) and 4.6 hr (2MA 2244) and peak-to-peak amplitudes of 10 and 8 mmag. Although the lack of detectable 8 μm variation suggests an instrumental origin for the detected variations, the data may nevertheless still be consistent with intrinsic variability, since the shorter wavelength IRAC bandpasses probe more deeply into late L dwarf atmospheres than the longer wavelengths. A cloud feature occupying a small percentage (1%-2%) of the visible hemisphere could account for the observed amplitude of variation. If, instead, the variability is indeed instrumental in origin, then our nonvariable L dwarfs could be either completely covered with clouds or objects whose clouds are smaller and uniformly distributed. Such scenarios would lead to very small photometric variations. Follow-up IRAC photometry at 3.6 and 5.8 μm bandpasses should distinguish between the two cases. In any event, the present observations provide the most sensitive search to date for structure in the photospheres of late L dwarfs at mid-IR wavelengths, and our photometry provides stringent upper limits to the extent to which the photospheres of these transition L dwarfs are structured

    Cloud Atlas: High-Contrast Time-Resolved Observations of Planetary-Mass Companions

    Get PDF
    Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations for these objects. Rotational phase mapping is a powerful technique to constrain the condensate cloud properties in ultra-cool atmospheres. Applying this technique to directly-imaged planetary-mass companions will be extremely valuable for constraining cloud models in low mass and surface gravity atmospheres and for determining the rotation rate and angular momentum of substellar companions. Here, we present Hubble Space Telescope Wide Field Camera 3 near-infrared time-resolved photometry for three planetary-mass companions, AB Pic B, 2M0122B, and 2M1207b. Using two-roll differential imaging and hybrid point spread function modeling, we achieve sub-percent photometric precision for all three observations. We find tentative modulations (< ⁣ ⁣2σ<\!\!2\sigma) for AB Pic B and 2M0122B but cannot reach conclusive results on 2M1207b due to strong systematics. The relatively low significance of the modulation measurements cannot rule out the hypothesis that these planetary-mass companions have the same vertical cloud structures as brown dwarfs. Our rotation rate measurements, combined with archival period measurements of planetary-mass companions and brown dwarfs do not support a universal mass-rotation relation. The high precision of our observations and the high occurrence rates of variable low-surface gravity objects encourage high-contrast time-resolved observations with the James Webb Space Telescope.Comment: Accepted for publication in AAS Journa
    corecore