1,846 research outputs found

    Monte Carlo Predictions of Far-Infrared Emission from Spiral Galaxies

    Get PDF
    We present simulations of Far Infrared (FIR) emission by dust in spiral galaxies, based on the Monte Carlo radiative transfer code of Bianchi, Ferrara & Giovanardi (1996). The radiative transfer is carried out at several wavelength in the Ultraviolet, optical and Near Infrared, to cover the range of the stellar Spectral Energy Distribution (SED). Together with the images of the galactic model, a map of the energy absorbed by dust is produced. Using Galactic dust properties, the spatial distribution of dust temperature is derived under the assumption of thermal equilibrium. A correction is applied for non-equilibrium emission in the Mid Infrared. Images of dust emission can then be produced at any wavelength in the FIR. We show the application of the model to the spiral galaxy NGC 6946. The observed stellar SED is used as input and models are produced for different star-dust geometries. It is found that only optically thick dust disks can reproduce the observed amount of FIR radiation. However, it is not possible to reproduce the large FIR scalelength suggested by recent observation of spirals at 200 um, even when the scalelength of the dust disk is larger than that for stars. Optically thin models have ratios of optical/FIR scalelengths closer to the 200um observations, but with smaller absolute scalelengths than optically thick cases. The modelled temperature distributions are compatible with observations of the Galaxy and other spirals. We finally discuss the approximations of the model and the impact of a clumpy stellar and dust structure on the FIR simulations.Comment: 19 pages, 6 figures, accepted by A&

    SCUBA imaging of NGC 7331 dust ring

    Get PDF
    We present observations of the spiral galaxy NGC 7331 using the Sub-millimetre Common User Bolometer Array (SCUBA) on the James Clark Maxwell Telescope. We have detected a dust ring of 45 arcsec radius (3.3 kpc) at wavelengths of 450 and 850-micron. The dust ring is in good correspondence with other observations of the ring in the mid-infrared (MIR), CO and radio-continuum, suggesting that the observed dust is associated with the molecular gas and star formation. A B-K colour map shows an analogous ring structure with an asymmetry about the major axis, consistent with the extinction being produced by a dust ring. The derived temperature of the dust lies between 16 and 31 K and the gas-to-dust ratio between 150 and 570, depending on the assumed dust emission efficiency index (beta=1.5 or 2.).Comment: 5 pages, 6 figures, to be published in MNRA

    Abundant dust found in intergalactic space

    Get PDF
    Galactic dust constitutes approximately half of the elements more massive than helium produced in stellar nucleosynthesis. Notwithstanding the formation of dust grains in the dense, cool atmospheres of late-type stars, there still remain huge uncertainties concerning the origin and fate of galactic stardust. In this paper, we identify the intergalactic medium (i.e. the region between gravitationally-bound galaxies) as a major sink for galactic dust. We discover a systematic shift in the colour of background galaxies viewed through the intergalactic medium of the nearby M81 group. This reddening coincides with atomic, neutral gas previously detected between the group members. The dust-to-HI mass ratio is high (1/20) compared to that of the solar neighborhood (1/120) suggesting that the dust originates from the centre of one or more of the galaxies in the group. Indeed, M82, which is known to be ejecting dust and gas in a starburst-driven superwind, is cited as the probable main source.Comment: 5 pages, 3 figures, 1 table. ApJ Letters in pres

    Dust properties of external galaxies; NGC 891 revisited

    Get PDF
    We compare 850um SCUBA images of NGC 891 with the corresponding V-band optical depth predicted from radiation transfer simulations. These two tracers of dust show a very similar distribution along the minor axis and a reasonable agreement along the major axis. Assuming that the grains responsible for optical extinction are also the source of 850um emission we derive a submillimeter emissivity (emission efficiency) for dust in the NGC 891 disk. This quantity is found to be a factor of 2-3 higher than the generally-accepted (but highly uncertain) values adopted for the Milky Way. It should be stated, however, that if a substantial fraction of dust in NGC 891 is clumped, the emissivity in the two galaxies may be quite similar. We use our newly-acquired emissivity to convert our 850um images into detailed maps of dust mass and, utilizing 21cm and CO-emission data for NGC 891, derive the gas-to-dust ratio along the disk. We compute an average ratio of 260 -- a value consistent with the Milky Way and external spirals within the uncertainties in deriving both the dust mass and the quantity of molecular gas. The bulk of dust in NGC 891 appears to be closely associated with the molecular gas phase although it may start to follow the distribution of atomic hydrogen at radii >9 kpc (i.e. >0.5 R_25). Using the optical depth of the NGC 891 disk, we quantify how light emitted at high redshift is attenuated by dust residing in foreground spirals. For B-band observations of galaxies typically found in the Hubble Deep Field, the amount of light lost is expected to be small (~ 5%). This value depends critically on the maximum radial extent of cold dust in spiral disks (which is poorly known). It may also represent a lower limit if galaxies expel dust over time into the intergalactic medium.Comment: 22 pages, 7 figures, A&A accepte

    Radiation Pressure Supported Starburst Disks and AGN Fueling

    Full text link
    We consider the structure of marginally Toomre-stable starburst disks under the assumption that radiation pressure on dust grains provides the dominant vertical support against gravity. This is particularly appropriate when the disk is optically thick to its own IR radiation, as in the central regions of ULIRGs. Because the disk radiates at its Eddington limit, the Schmidt-law for star formation changes in the optically-thick limit, with the star formation rate per unit area scaling as Sigma_g/kappa, where Sigma_g is the gas surface density and kappa is the mean opacity. We show that optically thick starburst disks have a characteristic flux and dust effective temperature of F ~ 10^{13} L_sun/kpc^2 and T_eff ~ 90K, respectively. We compare our predictions with observations and find good agreement. We extend our model from many-hundred parsec scales to sub-parsec scales and address the problem of fueling AGN. We assume that angular momentum transport proceeds via global torques rather than a local viscosity. We account for the radial depletion of gas due to star formation and find a strong bifurcation between two classes of disk models: (1) solutions with a starburst on large scales that consumes all of the gas with little fueling of a central AGN and (2) models with an outer large-scale starburst accompanied by a more compact starburst on 1-10 pc scales and a bright central AGN. The luminosity of the latter models is in many cases dominated by the AGN. We show that the vertical thickness of the starburst disk on pc scales can approach h ~ r, perhaps accounting for the nuclear obscuration in some Type 2 AGN. We also argue that the disk of young stars in the Galactic Center may be the remnant of such a compact nuclear starburst.Comment: 26 pages, 9 figures, emulateapj, accepted to ApJ, minor changes, discussion tightened, references adde

    Star Formation Rate from Dust Infrared Emission

    Get PDF
    We examine what types of galaxies the conversion formula from dust infrared (IR) luminosity into the star formation rate (SFR) derived by Kennicutt (1998) is applicable to. The ratio of the observed IR luminosity, LIRL_{\rm IR}, to the intrinsic bolometric luminosity of the newly (\la 10 Myr) formed stars, LSFL_{\rm SF}, of a galaxy can be determined by a mean dust opacity in the interstellar medium and the activity of the current star formation. We find that these parameters area being 0.5≤LIR/LSF≤2.00.5 \le L_{\rm IR}/L_{\rm SF} \le 2.0 is very large, and many nearby normal and active star-forming galaxies really fall in this area. It results from offsetting two effects of a small dust opacity and a large cirrus contribution of normal galaxies relative to starburst galaxies on the conversion of the stellar emission into the dust IR emission. In conclusion, the SFR determined from the IR luminosity under the assumption of LIR=LSFL_{\rm IR}=L_{\rm SF} like Kennicutt (1998) is reliable within a factor of 2 for all galaxies except for dust rich but quiescent galaxies and extremely dust poor galaxies.Comment: Accepted by ApJL: 6 pages (emulateapj5), 2 figures (one is an extra figure not appeared in ApJL

    A Mini-survey of X-ray Point Sources in Starburst and Non-Starburst Galaxies

    Get PDF
    We present a comparison of X-ray point source luminosity functions of 3 starburst galaxies (the Antennae, M82, and NGC 253) and 4 non-starburst spiral galaxies (NGC 3184, NGC 1291, M83, and IC 5332). We find that the luminosity functions of the starbursts are flatter than those of the spiral galaxies; the starbursts have relatively more sources at high luminosities. This trend extends to early-type galaxies which have steeper luminosity functions than spirals. We show that the luminosity function slope is correlated with 60 micron luminosity, a measure of star formation. We suggest that the difference in luminosity functions is related to the age of the X-ray binary populations and present a simple model which highlights how the shape of the luminosity distribution is affected by the age of the underlying X-ray binary population.Comment: 8 pages, 4 figures. accepted for publication in Ap

    Dense Cloud Ablation and Ram Pressure Stripping of the Virgo Spiral NGC 4402

    Full text link
    We present optical, HI and radio continuum observations of the highly inclined Virgo Cluster Sc galaxy NGC 4402, which show evidence for ram-pressure stripping and dense cloud ablation. VLA HI and radio continuum maps show a truncated gas disk and emission to the northwest of the main disk emission. In particular, the radio continuum emission is asymmetrically extended to the north and skewed to the west. The Halpha image shows numerous HII complexes along the southern edge of the gas disk, possibly indicating star formation triggered by the ICM pressure. BVR images at 0.5" resolution obtained with the WIYN Tip-Tilt Imager show a remarkable dust lane morphology: at half the optical radius, the dust lane of the galaxy curves up and out of the disk, matching the HI morphology. Large dust plumes extend upward for ~1.5 kpc from luminous young star clusters at the SE edge of the truncated gas disk. These star clusters are very blue, indicating very little dust reddening, which suggests dust blown away by an ICM wind at the leading edge of the interaction. To the south of the main ridge of interstellar material, where the galaxy is relatively clean of gas and dust, we have discovered 1 kpc long linear dust filaments with a position angle that matches the extraplanar radio continuum tail; we interpret this angle as the projected ICM wind direction. One of the observed dust filaments has an HII region at its head. We interpret these dust filaments as large, dense clouds which were initially left behind as the low-density ISM is stripped, but are then ablated by the ICM wind. These results provide striking new evidence on the fate of molecular clouds in stripped cluster galaxies.Comment: 17 pages, 4 figures, accepted for publication in AJ. See ftp://ftp.astro.yale.edu/pub/hugh/papers/crowl_n4402.ps.gz for a version with high-resolution figure

    The Rest-Frame Optical Properties of z~3 Galaxies

    Get PDF
    We present the results of a near-infrared imaging survey of z~3 Lyman Break Galaxies (LBGs). The survey covers a total of 30 arcmin^2 and includes 118 photometrically selected LBGs with K_s band measurements, 63 of which also have J band measurements, and 81 of which have spectroscopic redshifts. Using the distribution of optical {\cal R} magnitudes from previous work and {\cal R}-K_s colors for this sub-sample, we compute the rest-frame optical luminosity function of LBGs. At the brightest magnitudes, where it is fairly well constrained, this luminosity function strikingly exceeds locally determined optical luminosity functions. The V-band luminosity density of only the observed bright end of the z~3 LBG luminosity function already approaches that of all stars in the local universe. For the 81 galaxies with measured redshifts, we investigate the range of LBG stellar populations implied by the photometry which generally spans the range 900--5500 AA in the rest-frame. While there are only weak constraints on the parameters for most of the individual galaxies, there are strong trends in the sample as a whole. A unified scenario which accounts for the observed trends in bright LBGs is one in which a relatively short period of very rapid star-formation (hundreds of M_sun/yr) lasts for roughly 50--100 Myr, after which both the extinction and star-formation rate are considerably reduced and stars are formed at a more quiescent, but still rapid, rate for at least a few hundred Myr. In our sample, a considerable fraction (~20%) of the LBGs have best-fit star-formation ages ~> 1 Gyr, implied stellar masses of ~> 10^10 M_sun, and are still forming stars at \~30 M_sun/yr.Comment: 61 pages including 19 figures. Accepted for publication in Ap

    Mapping the submillimeter spiral wave in NGC 6946

    Get PDF
    We have analysed SCUBA 850\mum images of the (near) face-on spiral galaxy NGC 6946, and found a tight correlation between dust thermal emission and molecular gas. The map of visual optical depth relates well to the distribution of neutral gas (HI+H2) and implies a global gas-to-dust ratio of 90. There is no significant radial variation of this ratio: this can be understood, since the gas content is dominated by far by the molecular gas. The latter is estimated through the CO emission tracer, which is itself dependent on metallicity, similarly to dust emission. By comparing the radial profile of our visual optical depth map with that of the SCUBA image, we infer an emissivity (dust absorption coefficient) at 850\mum that is 3 times lower than the value measured by COBE in the Milky Way, and 9 times lower than in NGC 891. A decomposition of the spiral structure half way out along the disk of NGC 6946 suggests an interarm optical depth of between 1 and 2. These surprisingly high values represent 40-80% of the visual opacity that we measure for the arm region (abridged).Comment: 12 pages, 9 figures, accepted in A&
    • …
    corecore