48 research outputs found

    Effect of Tylosin on Rumen Fermantation in vitro

    Full text link

    Collocation graphs and networks using #LancsBox:Applications in English and Czech

    Get PDF
    This article deals with the notion of collocation graphs and lexical networks, which not only represent the visualization of the collocational relationship between linguistic units - these have been traditionally displayed in a tabular form with frequency distributions and association measure values - but also an important analytical method in its own right. We illustrate the use of collocation graphs and networks with two case studies as examples demonstrating the use of this technique in lexicography and discourse analysis. The examples are based on both English and Czech corpora, which we analysed using #LancsBox, a free tool which can build collocation graphs and networks on the fly

    Dielectric Properties of Ferroelectric Rb 2

    No full text

    Molecular Rotor based on an Oxidized Resorcinarene

    No full text
    Molecular single stator-double rotor activity of an oxidized resorcinarene (fuchsonarene) macrocycle containing unsaturated hemiquinonoid groups at its meso positions was investigated. Fuchsonarenes containing two hemiquinonoid substituents at diagonally-opposed meso-positions with two electron rich phenol groups at the remaining meso-positions between the hemiquinonoid groups. All meso-substituents are in proximity at one side of the resorcinarene macrocycle (so-called rccc-type isomer) with rotational activity of the phenol meso-substituents. Rotation rates of the phenol moieties can be controlled by varying temperature, solvent polarity and acidity of the medium of study with rotation being thermally activated in neutral and acidic media and tunable in the range from 2 s-1 to 20,000 s-1. Experimental and computational data indicate that rotation of the mobile phenol meso-substituents is remotely affected by interactions with acidic solvents at the carbonyl C=O groups of macrocyclic acetyloxy groups, which occurs with the emergence of a lower energy electronic absorption band whose intensity is correlated with both the acidity of the medium and the rotation rate of the phenol substituents. Time-dependent DFT calculations suggest that the low energy band is due to a molecular conformational adjustment affecting electronic conjugation caused by strong interaction of macrocyclic acetyloxy carbonyl groups with the acid medium. The work presents a molecular mechanical model for estimating solution acidity and also gives insight into a possible method for modulating rotor activity in molecular machines
    corecore