487 research outputs found

    Effects of Withania somnifera (Ashwagandha) on hematological and biochemical markers, hormonal behavior, and oxidant response in healthy adults: A systematic review

    Get PDF
    Producción CientíficaPurpose of Review Withania somnifera (L.) Dunal (Ws) is a common herb plant that has been used for centuries to treat a wide range of conditions, particularly certain chronic diseases due to its antidiabetic, cardioprotective, antistress, and chondroprotec- tive effects, among many others. No conclusive evidence, however, exists about the potential health effects of Ws in adults with- out chronic conditions. We aimed to evaluate the current evidence on the health benefits of Ws supplementation in healthy adults. Recent Findings Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in Web of Science, Scopus, and PubMed to assess the effects of Ws on hema- tological and biochemical markers, hormonal behavior, and oxidant response in healthy adults. Original articles published up to March 5, 2022, with a controlled trial design or pre-post intervention design, in which supplementation of Ws was compared to a control group or data prior to intervention were included. Among 2,421 records identified in the search, 10 studies met the inclusion criteria. Overall, most of the studies reported beneficial effects of the Ws supplementation, and no serious adverse events were reported. Participants supplemented with Ws displayed reduced levels of oxidative stress and inflammation, and counterbalanced hormone levels. No evidence of the beneficial effects of Ws supplementation on hematological markers was reported. Summary Ws supplementation appears to be safe, may regulate hormone levels, and has potent anti-inflammatory and anti- oxidant effects. However, further studies are needed to elucidate the relevance of its application.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab

    Full text link
    A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.Comment: 6 pages, 7 figures. To appear in the Proceedings of the International Nuclear Physics Conference (INPC 2010), July 4-9 2010, Vancouver, Canada (Journal of Physics: Conference Series

    The 2008 August 1 Eclipse Solar-Minimum Corona Unraveled

    Full text link
    We discuss results stemming from observations of the white-light and [Fe XIV] emission corona during the total eclipse of the Sun of 2008 August 1, in Mongolia (Altaj region) and in Russia (Akademgorodok, Novosibirsk, Siberia). Corresponding to the current extreme solar minimum, the white-light corona, visible up to 20 solar radii, was of a transient type with well-pronounced helmet streamers situated above a chain of prominences at position angles 48, 130, 241 and 322 degrees. A variety of coronal holes, filled with a number of thin polar plumes, were seen around the poles. Furthering an original method of image processing, stars up to 12 magnitude, a Kreutz-group comet (C/2008 O1), and a coronal mass ejection (CME) were also detected, with the smallest resolvable structures being of, and at some places even less than, 1 arcsec. Differences, presumably motions, in the corona and prominences are seen even with the 19-min time difference between our sites. In addition to the high-resolution coronal images, which show the continuum corona (K-corona) that results from electron scattering of photospheric light, images of the overlapping green-emission-line (530.3 nm, [Fe XIV]) corona were obtained with the help of two narrow-passband filters (centered on the line itself and for the continuum in the vicinity of 529.1 nm, respectively), each with FWHM of 0.15 nm. Through solar observations, on whose scheduling and details we consulted, with the Solar and Heliospheric Observatory, Hinode's XRT and SOT, TRACE, and STEREO, as well as Wilcox Solar Observatory and SOHO/MDI magnetograms, we set our eclipse observations in the context of the current unusually low and prolonged solar minimum.Comment: Accepted in The Astrophysical Journal, 6 July 200

    Quasifree photoabsorption on neutron-proton pairs in 3He

    Full text link
    Three-body photodisintegration of 3He is calculated in the photon energy range 200 - 400 MeV assuming quasifree absorption on np pairs both in initial quasideuteron and singlet configurations. The model includes the normal nucleonic current, explicit meson exchange currents and the Delta(1232)-isobar excitation. The total cross section is increased by a factor of about 1.5 compared with free deuteron photodisintegration. Well below and above the Delta region also some spin observables differ significantly from the ones of free deuteron disintegration due to the more compressed wave function of the correlated np pairs in 3He compared to the deuteron. The initial singlet state causes a significant change in the analyzing power Ay. These differences could presumably be seen at the conjugate angles where two-body effects are maximized and where photoreactions could complement similar pion absorption experiments. Figures by fax or post from [email protected]: 23 pages, report MKPH-T-94-10/HU-TFT-94-1

    Moments of the Neutron \u3cem\u3eg\u3c/em\u3e\u3csub\u3e2\u3c/sub\u3e Structure Function at Intermediate \u3cem\u3eQ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    We present new experimental results for the 3He spin structure function g2 in the resonance region at Q2 values between 1.2 and 3.0(GeV/c)2. Spin dependent moments of the neutron were extracted. Our main result, the inelastic contribution to the neutron d2 matrix element, was found to be small at ⟨Q2⟩=2.4(GeV/c)2 and in agreement with the lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region

    First Measurement of Unpolarized Semi-Inclusive Deep-Inelastic Scattering Cross Sections From a He 3 Target

    Get PDF
    The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in 3He(e,e′π±)X have been measured for the first time in Jefferson Lab experiment E06-010 with a 5.9GeV e- beam on a 3He gas target. The experiment focuses on the valence quark region, covering a kinematic range 0.12\u3cxbj\u3c0.45,1\u3cQ2\u3c4(GeV/c)2,0.45\u3czh\u3c0.65, and 0.05\u3cPt\u3c0.55GeV/c. The extracted SIDIS differential cross sections of π± production are compared with existing phenomenological models while the 3He nucleus approximated as two protons and one neutron in a plane-wave picture, in multidimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero. © 2017 American Physical Society

    Strange nucleon form factors in the perturbative chiral quark model

    Get PDF
    We apply the perturbative chiral quark model at one loop to calculate the strange form factors of the nucleon. A detailed numerical analysis of the strange magnetic moments and radii of the nucleon, and also the momentum dependence of the form factors is presented.Comment: 18 pages, 6 figure

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu
    corecore