675 research outputs found
A model of an expanding giant that swallowed planets for the eruption of V838 Monocerotis
In early 2002 V838 Monocerotis had an extraordinary outburst whose nature is
still unclear. The optical light curve showed at least three peaks and imaging
revealed a light echo around the object - evidence for a dust shell which was
emitted several thousand years ago and now reflecting light from the eruption.
Spectral analysis suggests that the object was relatively cold throughout the
event, which was characterized by an expansion to extremely large radii. We
show that the three peaks in the light curve have a similar shape and thus it
seems likely that a certain phenomenon was three times repeated. Our suggestion
that the outburst was caused by the expansion of a red giant, followed by the
successive swallowing of three relatively massive planets in close orbits,
supplies a simple explanation to all observed peculiarities of this intriguing
object.Comment: 5 pages, 1 LaTex file, 2 .eps figures, accepted for publication in
MNRA
Properties of Umbral Dots as Measured from the New Solar Telescope Data and MHD Simulations
We studied bright umbral dots (UDs) detected in a moderate size sunspot and
compared their statistical properties to recent MHD models. The study is based
on high resolution data recorded by the New Solar Telescope at the Big Bear
Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living
longer than 150 s, were detected and tracked in a 46 min long data set, using
an automatic detection code. Total 1553 (620) UDs were detected in the
photospheric (low chromospheric) data. Our main findings are: i) none of the
analyzed UDs is precisely circular, ii) the diameter-intensity relationship
only holds in bright umbral areas, and iii) UD velocities are inversely related
to their lifetime. While nearly all photospheric UDs can be identified in the
low chromospheric images, some small closely spaced UDs appear in the low
chromosphere as a single cluster. Slow moving and long living UDs seem to exist
in both the low chromosphere and photosphere, while fast moving and short
living UDs are mainly detected in the photospheric images. Comparison to the 3D
MHD simulations showed that both types of UDs display, on average, very similar
statistical characteristics. However, i) the average number of observed UDs per
unit area is smaller than that of the model UDs, and ii) on average, the
diameter of model UDs is slightly larger than that of observed ones.Comment: Accepted by the AP
The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system
Using high-quality spectra of the twin stars in the XO-2 binary system, we
have detected significant differences in the chemical composition of their
photospheres. The differences correlate strongly with the elements' dust
condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex
and refractories are overabundant by up to 0.090 dex. On average, our error bar
in relative abundance is 0.012 dex. We present an early metal-depletion
scenario in which the formation of the gas giant planets known to exist around
these stars is responsible for a 0.015 dex offset in the abundances of all
elements while 20 M_Earth of non-detected rocky objects that formed around
XO-2S explain the additional refractory-element difference. An alternative
explanation involves the late accretion of at least 20 M_Earth of planet-like
material by XO-2N, allegedly as a result of the migration of the hot Jupiter
detected around that star. Dust cleansing by a nearby hot star as well as age
or Galactic birthplace effects can be ruled out as valid explanations for this
phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other
formats -> Source" downloa
Isospin non-equilibrium in heavy-ion collisions at intermediate energies
We study the equilibration of isospin degree of freedom in intermediate
energy heavy-ion collisions using an isospin-dependent BUU model. It is found
that there exists a transition from the isospin equilibration at low energies
to non-equilibration at high energies as the beam energy varies across the
Fermi energy in central, asymmetric heavy-ion collisions. At beam energies
around 55 MeV/nucleon, the composite system in thermal equilibrium but isospin
non-equilibrium breaks up into two primary hot residues with N/Z ratios closely
related to those of the target and projectile respectively. The decay of these
forward-backward moving residues results in the strong isospin asymmetry in
space and the dependence of the isotopic composition of fragments on the N/Z
ratios of the target and projectile. These features are in good agreement with
those found recently in experiments at NSCL/MSU and TAMU, implications of these
findings are discussed.Comment: 9 pages, latex, + 3 figures available upon reques
Fragment Isospin as a Probe of Heavy-Ion Collisions
Isotope ratios of fragments produced at mid-rapidity in peripheral and
central collisions of 114Cd ions with 92Mo and 98Mo target nuclei at E/A = 50
MeV are compared. Neutron-rich isotopes are preferentially produced in central
collisions as compared to peripheral collisions. The influence of the size (A),
density, N/Z, E*/A, and Eflow/A of the emitting source on the measured isotope
ratios was explored by comparison with a statistical model (SMM). The
mid-rapidity region associated with peripheral collisions does not appear to be
neutron-enriched relative to central collisions.Comment: 12 pages including figure
Fragment size correlations in finite systems - application to nuclear multifragmentation
We present a new method for the calculation of fragment size correlations in
a discrete finite system in which correlations explicitly due to the finite
extent of the system are suppressed. To this end, we introduce a combinatorial
model, which describes the fragmentation of a finite system as a sequence of
independent random emissions of fragments. The sequence is accepted when the
sum of the sizes is equal to the total size. The parameters of the model, which
may be used to calculate all partition probabilities, are the intrinsic
probabilities associated with the fragments. Any fragment size correlation
function can be built by calculating the ratio between the partition
probabilities in the data sample (resulting from an experiment or from a Monte
Carlo simulation) and the 'independent emission' model partition probabilities.
This technique is applied to charge correlations introduced by Moretto and
collaborators. It is shown that the percolation and the nuclear statistical
multifragmentaion model ({\sc smm}) are almost independent emission models
whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong
correlations corresponding to the break-up of the hot dilute nucleus into
nearly equal size fragments
Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation
In the independent-particle model, the nuclear level density is determined
from the neutron and proton single-particle level densities. The
single-particle level density for the positive-energy continuum levels is
important at high excitation energies for stable nuclei and at all excitation
energies for nuclei near the drip lines. This single-particle level density is
subdivided into compound-nucleus and gas components. Two methods were
considered for this subdivision. First in the subtraction method, the
single-particle level density is determined from the scattering phase shifts.
In the Gamov method, only the narrow Gamov states or resonances are included.
The level densities calculated with these two methods are similar, both can be
approximated by the backshifted Fermi-gas expression with level-density
parameters that are dependent on A, but with very little dependence on the
neutron or proton richness of the nucleus. However, a small decrease in the
level-density parameter was predicted for some nuclei very close to the drip
lines. The largest difference between the calculations using the two methods
was the deformation dependence on the level density. The Gamov method predicts
a very strong peaking of the level density at sphericity for high excitation
energies. This leads to a suppression of deformed configurations and,
consequently, the fission rate predicted by the statistical model is reduced in
the Gamov method.Comment: 18 pages 24 figure
Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy
Present applications of the dispersive-optical-model analysis are restricted
by the use of a local but energy-dependent version of the generalized
Hartree-Fock potential. This restriction is lifted by the introduction of a
corresponding nonlocal potential without explicit energy dependence. Such a
strategy allows for a complete determination of the nucleon propagator below
the Fermi energy with access to the expectation value of one-body operators
(like the charge density), the one-body density matrix with associated natural
orbits, and complete spectral functions for removal strength. The present
formulation of the dispersive optical model (DOM) therefore allows the use of
elastic electron-scattering data in determining its parameters. Application to
Ca demonstrates that a fit to the charge radius leads to too much
charge near the origin using the conventional assumptions of the functional
form of the DOM. A corresponding incomplete description of high-momentum
components is identified, suggesting that the DOM formulation must be extended
in the future to accommodate such correlations properly. Unlike the local
version, the present nonlocal DOM limits the location of the deeply-bound hole
states to energies that are consistent with (\textit{e,e}\textit{p})
and (\textit{p,2p}) data.Comment: 14 pages, 10 figures, submitted to Physical Review
- …