10,051 research outputs found
Orbiter/launch system
The system includes reusable turbojet propelled booster vehicles releasably connected to a reusable rocket powered orbit vehicle. The coupled orbiter-booster combination takes off horizontally and ascends to staging altitude and speed under booster power with both orbiter and booster wings providing lift. After staging, the booster vehicles fly back to Earth for horizontal landing and the orbiter vehicle continues ascending to orbit
Modulation of Thermoelectric Power of Individual Carbon Nanotubes
Thermoelectric power (TEP) of individual single walled carbon nanotubes
(SWNTs) has been measured at mesoscopic scales using a microfabricated heater
and thermometers. Gate electric field dependent TEP-modulation has been
observed. The measured TEP of SWNTs is well correlated to the electrical
conductance across the SWNT according to the Mott formula. At low temperatures,
strong modulations of TEP were observed in the single electron conduction
limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the
Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let
Operation of Graphene Transistors at GHz Frequencies
Top-gated graphene transistors operating at high frequencies (GHz) have been
fabricated and their characteristics analyzed. The measured intrinsic current
gain shows an ideal 1/f frequency dependence, indicating an FET-like behavior
for graphene transistors. The cutoff frequency fT is found to be proportional
to the dc transconductance gm of the device. The peak fT increases with a
reduced gate length, and fT as high as 26 GHz is measured for a graphene
transistor with a gate length of 150 nm. The work represents a significant step
towards the realization of graphene-based electronics for high-frequency
applications
Improvement of Dynamic Soil Properties Induced by Preloading Verified by a Field Test and Embankment Failure
The results of an elaborate field preloading study on a liquefaction-susceptible site are presented. Preloading was applied by a temporary embankment 9m high. Prior and after preloading, borings with standard penetration tests, cone penetration tests and geophysical studies were performed. During the process of embankment construction and demolition, settlements, excess pore pressures and vertical and horizontal stresses were recorded versus time at different locations. A partial embankment failure occurred during the preloading process. A method predicting failure during the construction of the preload embankment based on excess pore pressure measurements is proposed and verified
Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion
Several models of flocking have been promoted based on simulations with
qualitatively naturalistic behavior. In this paper we provide the first direct
application of computational modeling methods to infer flocking behavior from
experimental field data. We show that this approach is able to infer general
rules for interaction, or lack of interaction, among members of a flock or,
more generally, any community. Using experimental field measurements of homing
pigeons in flight we demonstrate the existence of a basic distance dependent
attraction/repulsion relationship and show that this rule is sufficient to
explain collective behavior observed in nature. Positional data of individuals
over time are used as input data to a computational algorithm capable of
building complex nonlinear functions that can represent the system behavior.
Topological nearest neighbor interactions are considered to characterize the
components within this model. The efficacy of this method is demonstrated with
simulated noisy data generated from the classical (two dimensional) Vicsek
model. When applied to experimental data from homing pigeon flights we show
that the more complex three dimensional models are capable of predicting and
simulating trajectories, as well as exhibiting realistic collective dynamics.
The simulations of the reconstructed models are used to extract properties of
the collective behavior in pigeons, and how it is affected by changing the
initial conditions of the system. Our results demonstrate that this approach
may be applied to construct models capable of simulating trajectories and
collective dynamics using experimental field measurements of herd movement.
From these models, the behavior of the individual agents (animals) may be
inferred
QSO's from Galaxy Collisions with Naked Black Holes
In the now well established conventional view (see Rees [1] and references
therein), quasi-stellar objects (QSOs) and related active galactic nuclei (AGN)
phenomena are explained as the result of accretion of plasma onto giant black
holes which are postulated to form via gravitational collapse of the high
density regions in the centers of massive host galaxies. This model is
supported by a wide variety of indirect evidence and seems quite likely to
apply at least to some observed AGN phenomena. However, one surprising set of
new Hubble Space Telescope (HST) observations [2-4] directly challenges the
conventional model, and the well known evolution of the QSO population raises
some additional, though not widely recognized, difficulties. We propose here an
alternative possibility: the Universe contains a substantial independent
population of super-massive black holes, and QSO's are a phenomenon that occurs
due to their collisions with galaxies or gas clouds in the intergalactic medium
(IGM). This hypothesis would naturally explain why the QSO population declines
very rapidly towards low redshift, as well as the new HST data.Comment: plain TeX file, no figures, submitted to Natur
Spatial accessibility and social inclusion: The impact of Portugal's last health reform
Health policies seek to promote access to health care and should provide appropriate geographical accessibility to each demographical functional group. The dispersal demand of health‐careservices and the provision for such services atfixed locations contribute to the growth of inequality intheir access. Therefore, the optimal distribution of health facilities over the space/area can lead toaccessibility improvements and to the mitigation of the social exclusion of the groups considered mostvulnerable. Requiring for such, the use of planning practices joined with accessibility measures. However,the capacities of Geographic Information Systems in determining and evaluating spatial accessibility inhealth system planning have not yet been fully exploited. This paper focuses on health‐care services planningbased on accessibility measures grounded on the network analysis. The case study hinges on mainlandPortugal. Different scenarios were developed to measure and compare impact on the population'saccessibility. It distinguishes itself from other studies of accessibility measures by integrating network data ina spatial accessibility measure: the enhanced two‐stepfloating catchment area. The convenient location forhealth‐care facilities can increase the accessibility standards of the population and consequently reducethe economic and social costs incurred. Recently, the Portuguese government implemented a reform thataimed to improve, namely, the access and equity in meeting with the most urgent patients. It envisaged,in terms of equity, the allocation of 89 emergency network points that ensured more than 90% of thepopulation be within 30 min from any one point in the network. Consequently, several emergency serviceswere closed, namely, in rural areas. This reform highlighted the need to improve the quality of the emergencycare, accessibility to each care facility, and equity in their access. Hence, accessibility measures becomean efficient decision‐making tool, despite its absence in effective practice planning. According to anapplication of this type of measure, it was possible to verify which levels of accessibility were decreased,including the most disadvantaged people, with a larger time of dislocation of 12 min between 2001 and 2011
- …