419 research outputs found

    Tailoring exchange interactions in engineered nanostructures: Ab initio study

    Full text link
    We present a novel approach to spin manipulation in atomic-scale nanostructures. Our ab initio calculations clearly demonstrate that it is possible to tune magnetic properties of sub-nanometer structures by adjusting the geometry of the system. By the example of two surface-based systems we demonstrate that (i) the magnetic moment of a single adatom coupled to a buried magnetic Co layer can be stabilized in either a ferromagnetic or an antiferromagnetic configuration depending on the spacer thickness. It is found that a buried Co layer has a profound effect on the exchange interaction between two magnetic impurities on the surface. (ii) The exchange interaction between magnetic adatoms can be manipulated by introducing artificial nonmagnetic Cu chains to link them.Comment: 4 pages, submitted to PR

    Tailoring exchange interactions in engineered nanostructures: Ab initio study

    Full text link
    We present a novel approach to spin manipulation in atomic-scale nanostructures. Our ab initio calculations clearly demonstrate that it is possible to tune magnetic properties of sub-nanometer structures by adjusting the geometry of the system. By the example of two surface-based systems we demonstrate that (i) the magnetic moment of a single adatom coupled to a buried magnetic Co layer can be stabilized in either a ferromagnetic or an antiferromagnetic configuration depending on the spacer thickness. It is found that a buried Co layer has a profound effect on the exchange interaction between two magnetic impurities on the surface. (ii) The exchange interaction between magnetic adatoms can be manipulated by introducing artificial nonmagnetic Cu chains to link them.Comment: 4 pages, submitted to PR

    Size-dependent Surface States on Strained Cobalt Nanoislands on Cu(111)

    Full text link
    Low-temperature scanning tunneling spectroscopy over Co nanoislands on Cu(111) showed that the surface states of the islands vary with their size. Occupied states exhibit a sizeable downward energy shift as the island size decreases. The position of the occupied states also significantly changes across the islands. Atomic-scale simulations and ab inito calculations demonstrate that the driving force for the observed shift is related to size-dependent mesoscopic relaxations in the nanoislands.Comment: 4 pages, 4 figure

    Spectator Effects in the Decay B -> K \gamma \gamma

    Full text link
    We report the results of the first computation related to the study of the spectator effects in the rare decay mode B→KγγB\to K \gamma \gamma within the framework of Standard Model. It is found that the account of these effects results in the enhancement factor for the short-distance reducible contribution to the branching ratio.Comment: 5 pages, 5 figures, RevTeX

    Broad-band gravitational-wave pulses from binary neutron stars in eccentric orbits

    Get PDF
    Maximum gravitational wave emission from binary stars in eccentric orbits occurs near the periastron passage. We show that for a stationary distribution of binary neutron stars in the Galaxy, several high-eccentricity systems with orbital periods in the range from tens of minutes to several days should exist that emit broad gravitational-wave pulses in the frequency range 1-100 mHz. The space interferometer LISA could register the pulsed signal from these system at a signal-to-noise ratio level S/N>55S/N>5\sqrt{5} in the frequency range ∼10−3−10−1\sim 10^{-3}-10^{-1} Hz during one-year observational time. Some detection algorithms for such a signal are discussed.Comment: 17 pages, LATEX, 3 figures, Astronomy Letters, 2002, in press; typos corrected, refference adde
    • …
    corecore