13,426 research outputs found

    Non-abelian plasma instabilities for strong anisotropy

    Full text link
    We numerically investigate gauge field instabilities in anisotropic SU(2) plasmas using weak field initial conditions. The growth of unstable modes is stopped by non-abelian effects for moderate anisotropy. If we increase the anisotropy the growth continues beyond the non-abelian saturation bound. We find strong indications that the continued growth is not due to over-saturation of infrared field modes, but instead due to very rapid growth of high momentum modes which are not unstable in the weak field limit. The saturation amplitude strongly depends on the initial conditions. For strong initial fields we do not observe the sustained growth.Comment: 28 pages, 17 figure

    Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study

    Get PDF
    An experimental protocol using mesocosms was established to study the effect of Microcystis sp. cell abundance on microcystin production. The mesocosms (55 L) were set up in a shallow eutrophic lake and received either no (control), low (to simulate a moderate surface accumulation), or high (to simulate a dense surface scum) concentrations of Microcystis sp. cells collected from the lake water adjacent to the mesocosms. In the low- and high-cell addition mesocosms (2 replicates of each), the initial addition of Microcystis sp. cells doubled the starting cell abundance from 500 000 to 1 000 000 cells mL⁻Âč, but there was no detectable effect on microcystin quotas. Two further cell additions were made to the high-cell addition mesocosms after 60 and 120 min, increasing densities to 2 900 000 and 7 000 000 cells mL-1, respectively. Both additions resulted in marked increases in microcystin quotas from 0.1 pg cell-1 to 0.60 and 1.38 pg cell⁻Âč, respectively, over the 240 min period. Extracellular microcystins accounted for <12% of the total microcystin load throughout the whole experiment. The results of this study indicate a relationship between Microcystis cell abundance and/or mutually correlated environmental parameters and microcystin synthesis

    Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    Get PDF
    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat Λ\LambdaCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat Λ\LambdaCDM. We find a clear preference for models with free curvature, ΩK\Omega_\mathrm{K}, or free amplitude of the CMB lensing potential, ALA_\mathrm{L}. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15~CMB data and six other CMB and distance datasets. In flat Λ\LambdaCDM we find a 4.8σ4.8\sigma tension between the base P15~CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved Λ\LambdaCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-ℓ\ell multipoles of the CMB data. In the flat Λ\LambdaCDM +AL+A_\mathrm{L} model, however, all datasets are consistent with the base P15~CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15~CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat Λ\LambdaCDM model.Comment: 16 pages, 8 figures, 6 table

    High Redshift Quasars and Star Formation in the Early Universe

    Full text link
    In order to derive information on the star formation history in the early universe we observed 6 high-redshift (z=3.4) quasars in the near-infrared to measure the relative iron and \mgii emission strengths. A detailed comparison of the resulting spectra with those of low-redshift quasars show essentially the same FeII/MgII emission ratios and very similar continuum and line spectral properties, indicating a lack of evolution of the relative iron to magnesium abundance of the gas since z=3.4 in bright quasars. On the basis of current chemical evolution scenarios of galaxies, where magnesium is produced in massive stars ending in type II SNe, while iron is formed predominantly in SNe of type Ia with a delay of ~1 Gyr and assuming as cosmological parameters H_o = 72 km/s Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7$, we conclude that major star formation activity in the host galaxies of our z=3.4 quasars must have started already at an epoch corresponding to z_f ~= 10, when the age of the universe was less than 0.5 Gyrs.Comment: 29 pages, 5 figures, ApJ in pres

    Towards an optical potential for rare-earths through coupled channels

    Full text link
    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich \emph{et al.}, a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in September 2013, which should be published on AIP Conference Proceeding Series. arXiv admin note: substantial text overlap with arXiv:1311.1115, arXiv:1311.042

    Two Parameters for Three Dimensional Wetting Transitions

    Get PDF
    Critical effects at complete and critical wetting in three dimensions are studied using a coupled effective Hamiltonian H[s(y),\ell]. The model is constructed via a novel variational principle which ensures that the choice of collective coordinate s(y) near the wall is optimal. We highlight the importance of a new wetting parameter \Omega(T) which has a strong influence on critical properties and allows the status of long-standing Monte-Carlo simulation controversies to be re-examined.Comment: 4 pages RevTex, 2 encapsulated postscript figures, to appear in Europhys. Let

    Electronic Raman response in anisotropic metals

    Full text link
    Using a generalized response theory we derive the electronic Raman response function for metals with anisotropic relaxation rates. The calculations account for the long--range Coulomb interaction and treat the collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to finite wavenumbers (∣q∣â‰ȘkF|{\bf q}|\ll k_{\rm F}) and incorporate inelastic electron--electron scattering besides elastic impurity scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are presented.Comment: 5 pages, 4figures. accepted in PRB (Brief Report), in pres
    • 

    corecore