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ABSTRACT
Recent measurements of the cosmic microwave background (CMB) by the Planck Collab-
oration have produced arguably the most powerful observational evidence in support of the
standard model of cosmology, i.e. the spatially flat �CDM paradigm. In this work, we per-
form model selection tests to examine whether the base CMB temperature and large scale
polarization anisotropy data from Planck 2015 (P15; Planck Collaboration XIII) prefer any of
eight commonly used one-parameter model extensions with respect to flat �CDM. We find
a clear preference for models with free curvature, �K, or free amplitude of the CMB lensing
potential, AL. We also further develop statistical tools to measure tension between data sets.
We use a Gaussianization scheme to compute tensions directly from the posterior samples
using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented
here for the first time. We then proceed to investigate the consistency between the base P15
CMB data and six other CMB and distance data sets. In flat �CDM we find a 4.8σ tension
between the base P15 CMB data and a distance ladder measurement, whereas the former are
consistent with the other data sets. In the curved �CDM model we find significant tensions in
most of the cases, arising from the well-known low power of the low-� multipoles of the CMB
data. In the flat �CDM+AL model, however, all data sets are consistent with the base P15
CMB observations except for the CMB lensing measurement, which remains in significant
tension. This tension is driven by the increased power of the CMB lensing potential derived
from the base P15 CMB constraints in both models, pointing at either potentially unresolved
systematic effects or the need for new physics beyond the standard flat �CDM model.

Key words: methods: statistical – cosmic background radiation – cosmological parameters –
cosmology: observations – distance scale.

1 I N T RO D U C T I O N

Over the last two decades, growing observational evidence has been
collected in support of a model with a flat geometry, cold dark mat-
ter (CDM) and a cosmological constant, �. This model has been
extremely successful in the face of observational constraints from
a wide variety of data sets, such as temperature and anisotropy
measurements of the cosmic microwave background (CMB;
Bennett et al. 2013; Hinshaw et al. 2013; Planck Collaboration
I 2014; Planck Collaboration I 2015a; Planck Collaboration XIII
2015b; Planck Collaboration XI 2015c). It also accurately predicts
measurements of the cosmic distance ladder (Riess et al. 2011; Ef-
stathiou 2014; Aubourg et al. 2015; Riess et al. 2016), supernovae
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type Ia (Conley et al. 2011; Betoule et al. 2013), baryon acous-
tic oscillations (BAO; Beutler et al. 2011; Anderson et al. 2014;
Delubac et al. 2015; Ross et al. 2015), cluster gas mass fraction
(Allen et al. 2008; Mantz et al. 2014), cosmic shear correlation
function (Kilbinger et al. 2013; Mandelbaum et al. 2013; DES Col-
laboration 2015), CMB lensing (Das et al. 2011; van Engelen et al.
2012; Planck Collaboration XV 2015d), and cluster number counts
(Mantz et al. 2008; Vikhlinin et al. 2009; Benson et al. 2013; Has-
selfield et al. 2013; Bocquet et al. 2015; Mantz et al. 2015; Planck
Collaboration XXIV 2015e; de Haan et al. 2016).

Despite some recently discussed tensions concerning the value
of the present day Hubble parameter (see for instance Verde, Pro-
topapas & Jimenez 2013, 2014; Bennett et al. 2014; Riess et al.
2016) and the power of scalar fluctuations as measured from the
CMB and large-scale structure probes (see, among others, Hamann
& Hasenkamp 2013; Battye & Moss 2014; Raveri 2015; Grandis
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et al. 2016; Joudaki et al. 2016), the constraints from all these obser-
vations seem to agree reasonably well with each other in this model.

To test various key assumptions of the flat �CDM model, we
consider a series of one parameter extensions to this model and
investigate whether the increased complexity of the extended mod-
els is needed to improve the goodness of fit to the data. In this
work we show that the temperature and large scale polarization
CMB anisotropy measurements, i.e. the base CMB constraints, of
the Planck Collaboration XIII (2015b) and Planck Collaboration XI
(2015c) (hereafter called base P15 CMB) prefer a �CDM model
with free curvature, �K, or free lensing potential amplitude, AL. Be-
sides model selection, tensions between different data sets within
the same model can also indicate that the assumed model is not ad-
equate. We examine the level of agreement between the base CMB
constraints and different additional data sets in the flat �CDM,
curved �CDM, and flat �CDM+AL models. In flat �CDM, we
find mostly consistency among the data sets we consider with the
exception of a significant tension with a recent distance ladder mea-
surement, but this is no longer true in the two extended models we
examine. We find that the base P15 CMB constraints are in signifi-
cant tension with most external data sets in curved �CDM, whereas
in flat �CDM+AL, only the CMB lensing data show a significant
disagreement with the P15 CMB constraints.

To perform these data consistency tests, we have developed dif-
ferent statistical tools. Generalizing the Gaussianization scheme of
Schuhmann, Joachimi & Peiris (2016), for each model we consider,
we find a transformation of parameter space that maps on to Gaus-
sian distributions both the P15 CMB constraints alone and these
combined with one external data set. We then measure the degree of
tension introduced by these combinations using the entropy based
‘surprise’, which was introduced by Seehars et al. (2014, 2016) to
measure the consistency of an historical sequence of CMB surveys,
and employed by Grandis et al. (2016) to demonstrate the agree-
ment of different external data sets with the Wilkinson Microwave
Anisotropy Probe (WMAP; Bennett et al. 2013; Hinshaw et al. 2013).
The Gaussianization procedure is crucial to test the consistency be-
tween data sets in models with strong parameter degeneracies, as it
allows one to analytically approximate their constraints. This pro-
vides an important test, which we argue should be systematically
performed when combining data sets.

We also investigate the statistical properties of evidence ratios, a
widely used measure of data set agreement (see Marshall, Rajguru
& Slosar 2006; Amendola, Marra & Quartin 2013; Heneka, Marra
& Amendola 2014; Karpenka, Feroz & Hobson 2014; Martin et al.
2014; Raveri 2015). We demonstrate theoretically and with simple
examples that evidence ratios can be highly biased and therefore
need to be accurately calibrated. We also compare calibrated ev-
idence ratios to the surprise results, and find that they give very
comparable measures of the significance of the tension.

We organize the paper as follows. In Section 2, we discuss the
statistical tools employed. In Section 3, we present the data sets
used in our analysis. We then report our results on model selection
and data set consistency in Section 4, discussing the impact of
systematics and choices of priors in Section 5, which also contains
a discussion of the physical effects responsible for the deviation
from flatness or from AL = 1.

2 STAT I S T I C A L M E T H O D S

Cosmological constraints on a specific model, M, derived from as-
trophysical data, D, are usually expressed as a posterior distribution

p(θ |D,M) on the space of cosmological parameters θ . Posterior
distributions can be obtained by using the Bayes’ Theorem as

p(θ | D,M) = L(D| θ , M)

E(D| M)
p(θ ), (1)

where p(θ) is a prior, L(D| θ , M) the likelihood and E(D|M) the
evidence.

2.1 Gaussianization

In some models, the posterior distribution displays significant de-
partures from Gaussianity. This complicates both a possible analytic
approximation of the posterior as well as the comparison with other
posterior distributions. However, as explicitly shown by Schuhmann
et al. (2016), a suit of optimized transformations of the parameters
can efficiently map a generic uni-modal distribution on to a Gaus-
sian distribution. This allows one to analytically approximate the
distribution, significantly speeding up its evaluation. For details on
the precision of this approximation, see Appendix A.

Here we generalize the Gaussianization method proposed by
Schuhmann et al. (2016) to simultaneously Gaussianize two distri-
butions. Such a joint Gaussianization will allow us to compare the
two distributions analytically. For details, see also Appendix A. In
the following, we present the statistical tools we employ to quantify
comparisons between data sets (Section 2.2) and between models
(Section 2.3).

2.2 Quantifying tension

Given the variety of cosmological data sets, it is of great importance
to assess their mutual agreement. The absence of this agreement is
usually referred to as ‘tension’ between data sets. We first discuss
an entropy based method to measure these tensions and then an
evidence ratio based one.

2.2.1 Entropy-based method

To quantify the consistency of a data set D1 with another data set
D2 we can use the Kullback–Leibler divergence, also called relative
entropy, introduced by Kullback & Leibler (1951),

KL[D2| D1] =
∫

ddθ p(θ | D1, D2,M) ln

(
p(θ |D1, D2, M)

p(θ | D1)

)
,

(2)

where p(θ | D1) is the posterior distribution of the data set D1, which
we employ as a prior for updating the joint posterior of the two data
sets p(θ | D1, D2, M).

As discussed elsewhere (Seehars et al. 2014, 2016; Grandis et al.
2016), the relative entropy depends on the data sets D1 and D2,
and as such has an expected value 〈KL〉D2|D1 and a mean fluc-
tuation around this value σ (KL), which depends on the expected
distribution of the data set D2 given the prior p(θ | D1). The dif-
ference between the actual relative entropy and the expected rel-
ative entropy is defined by Seehars et al. (2014) as the surprise
S = KL[D2| D1] − 〈KL〉D2|D1 . If the surprise is negative, S < 0,
the data set D2 is in better agreement with the prior than expected;
if the surprise is positive, the data set D2 is in worse agreement with
the prior than expected. Comparing the surprise S to its expected
fluctuation σ (KL) allows one to estimate the significance of the
underlying tension (see Seehars et al. 2014, 2016, for more details).

The relative entropy is invariant under transformations in param-
eter space (for proof see appendix B in Grandis et al. 2016), and it
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is analytic if prior and posterior are multivariate Gaussian distribu-
tions (see Seehars et al. 2014). Thus, it can be easily estimated for 
two generic distributions after a joint Gaussianization. As shown by 
Seehars et al. (2014, 2016), in this case it will be given by

S = 1

2
�μT C−1

pr �μ − 1

2
tr

(
I − CpoC

−1
pr

)
, (3)

where �μ is the difference in means of the transformed distribu-
tions, Cpr and Cpo the covariances of the transformed prior and
posterior respectively, ‘tr’ stands for trace, and I is the identity ma-
trix. In this case, the variance of the relative entropy is given by
σ 2(KL) = tr[(C−1

pr Cpo − I)2]/2. Thus, given estimates of covari-
ances and means for prior and posterior, these quantities can be
easily estimated. Note that all entropy based results are given in
units of ‘bits’ by normalizing with ln 2.

As can be seen from equation (3), the surprise measures the shift
in the mean values �μ created by the update of p(θ | D1) with D2,
and asses how significant this shift is by comparing it to the expected
fluctuation σ (KL). Consequently, it is well suited to test whether D2

should be added to the constraints of D1.

2.2.2 Calibrated evidence ratio

A standard way (see Marshall et al. 2006; Amendola et al. 2013;
Heneka et al. 2014; Karpenka et al. 2014; Martin et al. 2014; Raveri
2015) of assessing the degree of agreement between two data sets
D1, D2 is given by the so called evidence ratio

R = E(D1, D2)

E(D1) E(D2)
, (4)

where E(D1, D2) is the joint evidence of the two data sets D1 and
D2, and E(D1) and E(D2) are the evidences of the individual data
sets.

This ratio is interpreted using the Jeffreys’ scale introduced by
Jeffreys (1961), where ln R > 0 indicates agreement and ln R < 0
indicates inconsistency. However, as pointed out by Seehars et al.
(2016), this interpretation does not take into account the statistical
behaviour of the evidence ratio. For this sake, in Appendix B1 we
compute the expected evidence ratio 〈ln R〉 and its variance σ 2(R)
= 〈(ln R − 〈ln R〉)2〉 for the case of data described by a Gaussian
likelihood under the assumption of a linear model and flat priors, and
define the calibrated evidence ratio ln R − 〈ln R〉. The latter allows
a more quantitative measurement of tension than the somewhat
heuristic Jeffreys’ scale, and avoids biasing the results. For other
details on our treatment of the evidence ratio see Appendix B.

2.3 Model selection

To determine whether a given data set, D, prefers a model M1

or model M2, we rely on the deviance information criterion
(hereafter DIC). Considering the generalized chi-squared χ2(θ ) =
−2 ln L(D| θ , Mi), the mean goodness of fit over the posterior
volume can be estimated as 〈χ2〉 = −2〈ln L(D| θ , Mi)〉. A model
which fits the data better will have a lower 〈χ2〉. Motivated by
information theory, Spiegelhalter et al. (2002) define the DIC as

DIC(Mi) = 〈χ2〉 + pD. (5)

This balances the mean goodness of fit 〈χ2〉 with the Bayesian
complexity pD, which measures the effective complexity of the
model and is given by

pD = 〈χ2〉 − χ2(θ̃ ), (6)

Table 1. Interpretation of the difference in deviance information criterion,
�DIC, using the Jeffreys’ scale as proposed by Spiegelhalter et al. (2002).
For nested models described by uncorrelated Gaussian likelihoods, �DIC
can be straightforwardly related to the deviation of the additional parameter
in the more complex model w.r.t. its fixed value in the simpler one. As
a reference, for a given �DIC we calculate the offset of an additional
parameter measured in standard deviations σ , and in the corresponding
p-value.

�DIC Preference σ p-value

(−2, 0) insignificant (1.41, 2.00) (2.28e − 2, 7.93e − 2)
(−5, −2) positive (2.00, 2.65) (4.02e − 3, 2.28e − 2)
(−10, −5) strong (2.65, 3.46) (2.70e − 4, 4.02e − 3)
(−∞, −10) decisive (3.46, ∞) (0, 2.70e − 4)

where θ̃ denotes the maximum likelihood point. A lower DIC means
either that the model fits the data better (lower 〈χ2〉) or that it
has a lower level of complexity, pD. A higher complexity, such as
additional model parameters, can only be compensated if they allow
a sufficient improvement of the goodness of fit.

For model selection, the difference �DIC = DIC(M2) − DIC(M1)
is interpreted using the Jeffreys’ scale (see Table 1). �DIC = 0
means that the data provide no preference for one model over the
other, −2 < �DIC < 0 that there is ‘no significant’ preference for
M2, −5 < �DIC < −2 a ‘positive’ preference, −10 < �DIC < −5
‘strong’, and −10 < �DIC ‘decisive’. The same values but positive
indicate a preference for M1 instead.

As an example of model selection with the DIC, consider the
following case. Let the data be described by a standardized Gaus-
sian likelihood −2 ln L = ∑n

i=1 θ2
i , where θ1, ..., θn are the model

parameters of M2, and let the simpler model M1 derive from M2 by
setting one of the model parameters θ j to the value σ . In this case,
assuming flat priors, the �DIC can be calculated analytically as 2
− σ 2 and the p-value of the offset σ can be computed from the fact
that the posterior of θ j given the data D, p(θ j|D, M2), is Gaussian.
For reference, we present these results in Table 1.

As discussed by Spiegelhalter et al. (2002), the DIC can also
deal with strong parameter degeneracies, such as the geometrical
degeneracy of the CMB data in curved models. It takes also into
account ‘parameter volume effects’, as it considers the goodness of
fit averaged over the posterior volume. Furthermore, this measure
can be easily computed from a posterior sample, which saves the
values ln L(D| θ , Mi) in every point, making it more versatile than
the evidence ratio (for applications of this measure to astrophysics
and cosmology, see Porciani & Norberg 2006; Liddle 2007; Mantz
et al. 2010; Joudaki et al. 2016).

3 C O S M O L O G I C A L DATA

3.1 Planck data

We employ the TT_lowTEB constraints from the Planck Collabo-
ration XIII (2015b) of the temperature and large scale polarization
anisotropies in the CMB, which we also refer to as ‘base P15
CMB’. When considering the full Planck 2015 temperature and
polarization measurements, we use the TTTEEE_lowTEB sample,
which we will also refer to as ‘full P15 CMB’. We also use
the CMB lensing constraints (Planck Collaboration XV 2015d)
included in the TT_lowTEB+lensing samples, referring to
them as ‘CMB lens’. The Monte Carlo Markov Chain (MCMC)
CMB samples analysed in this work were downloaded from
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the Planck Legacy Archive1 and subsequently Gaussianized as
described in Section 2.1.

3.2 Additional geometrical probes

Given an analytic expression for the base P15 CMB constraints
derived from the Gaussianization process described in Section 2.1
and Appendix A, we can easily combine them with measurements
from geometrical probes. This has the advantage that the promi-
nent geometrical degeneracy of the CMB data in curved models
can be broken (see e.g. Bond, Efstathiou & Tegmark 1997; Zaldar-
riaga, Spergel & Seljak 1997). We compute the theoretical distance
predictions using CAMB (Lewis, Challinor & Lasenby 2008)2 and
sample the joint constraints with the parallelized MCMC engine
COSMOHAMMER (Akeret et al. 2012).3 In the following we present the
additional geometrical data sets we used in this work.

3.2.1 Data sets

Various recent constraints on the Hubble constant H0 exist in the
literature (Riess et al. 2011, 2016; Bennett et al. 2014; Efstathiou
2014; Aubourg et al. 2015). In the present work, we use the latest
result by Riess et al. (2016, hereafter R16), who obtain H0 =73.02
± 1.79 km s−1 Mpc−1. As a consistency check, we also use the
constraint H E14

0 = 70.6 ± 3.3 km s−1 Mpc−1 reported by Efstathiou
(2014, hereafter E14). We use these measurements as Gaussian
likelihoods. This simple form will also allow us to employ them to
compute evidences as described in Appendices B1 and B2.

We also use measurements of the Hubble parameter as a func-
tion of redshift from the latest calibration of a large compilation of
supernovae type Ia (SNe) data by Betoule et al. (2013). This work
combines observations from the Supernovae Legacy Survey, the
Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope,
and provides a binned version of the SNe Hubble diagram with the
corresponding covariance matrix. As shown in appendix E of Be-
toule et al. (2013), computing the luminosity distance in Mpc h−1,
marginalising analytically over the intrinsic luminosity of the SNe
and assuming a Gaussian likelihood allows a straightforward com-
putation of the SNe constraints.

We also include constraints from baryon acoustic oscillations
(BAO) derived from galaxy correlations in the 6dF Galaxy Survey
by Beutler et al. (2011), the SDSS main galaxy sample by Ross et al.
(2015), and the Baryon Oscillation Spectroscopic Survey (BOSS)
by Anderson et al. (2014). The Planck Collaboration XIII (2015b,
see e.g. p. 24) provided samples of these BAO measurements to-
gether with the base CMB data, labelled as TT_lowTEB+BAO.

Delubac et al. (2015) derived BAO measurements from the Ly α

forest in the Data Release 11 of BOSS. We will refer to this
measurement as ‘Ly α BAO’. These results are reported as DA(z
= 2.34) = 1662 ± 96 Mpc (rd/rfid) and H(z = 2.34) = 222 ±
7 km s−1 Mpc−1 (rfid/rd), where DA is the angular diameter distance,
H(z) the expansion rate at a given redshift z, rfid = 147.4 Mpc the
fiducial sound horizon used by Delubac et al. (2015) and rd the
sound horizon dependent on the cosmological parameters. We as-
sume Gaussian likelihoods for these results.

1 http://pla.esac.esa.int/pla/#cosmology
2 http://camb.info/
3 https://github.com/cosmo-ethz/CosmoHammer

4 RESULTS

4.1 Which model is preferred by the P15 CMB data?

We compute the change in the deviance information criterion �DIC
between the standard flat �CDM and several extended models. We
consider all the one-parameter extensions for which the Planck
Collaboration published TT_lowTEB constraints, namely: �K (we
refer to this model as curved �CDM); AL, the amplitude of the
CMB lensing potential (we refer to this model as flat �CDM+AL);
mν , the effective sum of neutrino masses; dn/d ln k, the running of
the spectral index of scalar perturbations; Neff, the effective number
of relativistic degrees of freedom; r0.02, the tensor to scalar mode
ratio; w, the dark energy equation of state parameter; and YHe, the
primordial Helium fraction.

In Fig. 1 and Table 2, we show the differences between the DIC
of flat �CDM and those of the extended models as calculated from
the publicly available samples. We find that the P15 CMB data
favour most the curved �CDM model (�DIC = 6.02), followed
by the model with free AL (�DIC = 4.12). For the other model
extensions we find no significant preference over flat �CDM. We
also find that flat �CDM is preferred over a model with free tensor
to scalar ratio, r0.02.

The clear preferences for curved �CDM and flat �CDM+AL

are related to the fact that both �K and AL deviate more than 2σ

from their assumed value in flat �CDM (see also discussion on
p. 24 and 38 of Planck Collaboration XIII 2015b). For the case of

Figure 1. Differences in deviance information criterion, �DIC, between
flat �CDM and various one-parameter extensions of this model. These
results are estimated from the publicly available TT_lowTEB constraints.
The ranges −2 < �DIC < 2, �DIC > 2 and �DIC < −2 indicate no
significant preference for either model, a preference for the extended model,
or that the data prefer the simpler model, respectively. Remarkably, we find
clear preferences for two of the extended models, flat �CDM+AL (green)
and curved �CDM (red).

Table 2. �DIC between flat �CDM and various one-parameter extensions
of this model, for the base P15 CMB constraints. The ranges −2 < �DIC
< 2, �DIC > 2 and �DIC < −2 indicate no significant preference for
either model, a preference for the extended model, or that the data prefer the
simpler model, respectively.

�K AL mν dn/d ln k Neff r0.02 w YHe

6.02 4.12 −1.53 0.14 −1.18 −3.97 1.97 −1.57
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curved �CDM, we find a preference for a closed Universe (�K < 
0), with a p-value of

P (�K ≥ 0) =
∫ ∞

0
p(�K|TT lowTEB) d�K = 0.0033, (7)

corresponding to a 2.7σ significance. For the flat �CDM+AL

model, we find a preference for AL larger than 1, with p-value

P (AL ≤ 1) =
∫ 1

−∞
p(AL|TT lowTEB) dAL = 0.0098, (8)

which corresponds to a 2.3σ deviation from the theoretically
expected value AL = 1.

Even though the P15 CMB likelihood is more complex than the
one we use to calculate the reference results presented in Table 1,
the significances of the offsets and the related p-values we obtain
for the curved �CDM and flat �CDM+AL models are consistent
with the corresponding �DIC values in Table 2. We find no signif-
icant detection of curvature or AL > 1, although our �DIC results
indicate significant improvements of the fits w.r.t. the flat �CDM
model, which according to the Jeffreys’ scale dominate over the
increased complexity of the curved and flat �CDM+AL models.
This is confirmed by Planck Collaboration XIII (2015b), which
finds that the mean chi-squared 〈χ2〉 of the P15 CMB fit for these
two models is lower than for flat �CDM. As discussed in detail in
Planck Collaboration XIII (2015b, p. 24 and 38), these two models
are sensitive to the large angular scale part of the TT P15 CMB
spectrum and the power of CMB lensing potential C

φφ
� , as we show

in Section 5.4.

Table 3. Surprise values S, expected fluctuations σ , and significances of
tensions S/σ for different data sets added to the P15TT_lowTEB constraints
in the models we considered.

BAO CMB len. TEEE H0 SNe Ly α BAO

Flat �CDM

S −0.44 0.45 −1.13 1.11 −0.10 0.05
σ 0.68 0.72 0.97 0.23 0.15 0.05
S/σ −0.65 0.63 −1.16 4.78 −0.67 1.04

Curved �CDM
S 6.33 5.45 −1.19 7.36 2.85 0.77
σ 1.37 1.30 1.09 0.94 0.74 0.44
S/σ 4.63 4.18 −1.10 7.87 3.83 1.76

Flat �CDM+AL

S −0.31 3.73 −0.92 0.57 −0.10 0.07
σ 0.77 0.89 1.11 0.37 0.40 0.16
S/σ −0.40 4.21 −0.83 1.52 −0.25 0.46

to computing the surprise analytically. This is possible because the
relative entropy is invariant under parameter transformation and is
analytic for Gaussian constraints. This allows us to compute the
expected relative entropy 〈KL〉D2|D1 and a mean fluctuation around
this value σ (KL) analytically. As these quantities are obtained by
averaging over the distribution of data E(D2|D1), it would be very
difficult to compute them numerically. The same holds true for the
calibration of the evidence ratio 〈ln R〉. These integrals over the
data are analytic if the constraints can be assumed to be Gaussian,
as shown explicitly in Appendix B1.

4.3 Adding external data to the Planck CMB

Here we test the consistency between each of the data sets described
in Section 3 and the base P15 CMB constraints, first for the standard
flat �CDM model and then for the two models that we found in
Section 4.1 to be favoured by the base P15 CMB data, i.e. curved
�CDM and flat �CDM+AL. For the former case, we use the stan-
dard set of cosmological parameters listed in Section 4.2, while
marginalizing over the other parameters sampled by P15 as they
are unconstrained by the additional data. In the curved model we
also consider the constraints on �K, whereas in the flat �CDM+AL

model we add the parameter AL.

4.3.1 Flat �CDM

In flat �CDM, the base P15 CMB constraints are very well approxi-
mated by a multivariate Gaussian distribution, so no Gaussianization
is required for resampling. We approximate the constraints directly
as multivariate Gaussians, update them with constraints from exter-
nal data, and then compute the surprise. We summarize our results
in Table 3 and show them in Fig. 2 (blue bars). We find that for flat
�CDM all external data sets are consistent with the base P15 CMB
measurements. However, the H0 measurement of R16 is in almost
5σ tension with the base P15 CMB data set.5 Worth mentioning
is also the tendency to negative surprises for the BAO and SNe

5 R16 report that the distance between their mean H0 value and the mean
value obtained from the P15 analysis is 3σ , where σ 2 = σ 2

R16 + σ 2
P15 and

σ P15, R16 are the measurement uncertainties on H0 of the two experiments.
This result is not in contradiction with our claim, as we instead compute
the significance of such a shift. We find that this 3σ shift is significant at
almost a 5σ level. This is also confirmed by our calibrated evidence ratio
calculation below.

4.2 Quickly resampling the Planck constraints

The Gaussianization procedure effectively provides an analytic ap-
proximation to the P15 CMB likelihood. As we only Gaussianize 
the constraint on the cosmological parameters, we reconstruct the 
P15 CMB likelihood marginalized over the nuisance parameters. 
This is especially useful when using the P15 CMB constraints as 
priors to be combined with other probes, because it avoids the re-
sampling of the P15 nuisance parameters, significantly reducing the 
number of parameters involved in this calculation. For example, for 
flat �CDM, the TT+lowTEB likelihood depends on 21 parame-
ters, whereas only 5 are the cosmological parameters we resample. 
These cosmological parameters are H0, the present-day physical 
baryon and CDM densities in units of the critical density, �bh2 and 
�cdmh2, where  h = H0/100, and the amplitude and spectral index 
of the primordial scalar fluctuations, ln (1010 As) and ns.4 The re-

maining 16 parameters include the optical depth to reionization, τ , 
and 15 nuisance parameters.

Furthermore, a single call to the analytic likelihood approxima-
tion takes less than a milli-second, compared to several seconds for 
the original Planck likelihood. This opens the possibility to quickly 
resample the P15 CMB constraints and to efficiently combine 
them with other probes. For further details, see Appendix A. The 
likelihoods are available at the following URL: https://bitbucket. 
org/grandiss45/gaussianization/.

The Gaussianization of the samples is not only helpful to approx-
imate and quickly resample the P15 CMB constraints. It is crucial

4 For simplicity, when combining with other data sets, we consider H0 
instead of θMC, the ratio of the approximate sound horizon to the angular 
diameter distance at recombination. The impact of this choice is discussed 
in Section 5.2.
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Figure 2. Significances of the surprises in units of σ in the flat �CDM (blue), curved �CDM (red, left-hand panel), and flat �CDM+AL (green, right-hand
panel) models when combining the base P15 CMB constraints with six other probes. The grey regions show the 2σ and 3σ regions. Surprises more significant
than 3σ (above the grey regions) indicate tensions of the additional data with the CMB prior. We see that in flat �CDM all probes are consistent with the
base P15 CMB constraints, except for the distance ladder measurements. In curved �CDM, BAO, CMB lensing, H0 and SNe are in significant tension with
the base P15 CMB constraints. In flat �CDM+AL, CMB lensing is in significant tension with the base P15 CMB constraints, whereas the other probes are in
agreement.

data and most strongly for the ‘TEEE’ polarization data. Negative
surprises mean that the additional data agree with the prior more
than statistically expected. However, these negative surprises are not
significant, and can thus be interpreted as statistical fluctuations.

4.3.2 Curved �CDM

Fig. 3 shows joint constraints in the space of H0 and �K for the base
P15 CMB data set alone (red contours) and in separate combinations
with six additional data sets (blue contours). As is clear in this figure
and as already presented in equation (7), the base P15 CMB data
favour a model with negative curvature at the 2.7σ confidence level.
In itself, this is not a detection of curvature. Hence, to improve the
constraints, additional data sets can be added. Fig. 3 shows the
impact of such combinations and illustrates how the addition of
CMB lensing, two flavours of BAO, SNe and H0 measurements
push the P15 CMB constraints noticeably back towards flatness.

By jointly Gaussianizing the prior (the base P15 CMB con-
straints) and the posterior (combined constraints) for each data set
we add, we transform the cosmological parameters into a space
where both distributions are well described by Gaussian distribu-
tions. In this space, we estimate the surprise values given in Table 3
and shown in Fig. 2 (red bars in the left-hand panel). For an discus-
sion of the accuracy of this method, see Appendix A. As anticipated
by the large shifts in the marginalized plane of H0 and �K, most
additional probes are in significant tension with the base P15 CMB
constraints: H0 data at the 8σ level, BAO and CMB lensing data
just over 4σ , and SNe slightly less than 4σ . Ly α BAO data also
shift the CMB constraints, but this shift is only a bit less than 2σ

significant. Finally, also in this model, the TEEE spectrum of the
P15 polarization measurements agree with the base P15 constraints
more than statistically expected, although not in a statistically sig-
nificant manner.

The large surprises in four of the external data sets when com-
bined with the P15 CMB constraints is evidence of significant ten-
sions among the data sets. Thus, our analysis emphasizes that while
the combined constraints (P15 CMB + external data set) prefer
flatness more than the P15 CMB data set alone, this comes at the
cost of combining data sets that in four cases are significantly in
tension with one another.

Figure 3. Marginal constraints on H0 and �K from the base P15 CMB data
set (red contours) and the addition of different data sets to the latter (blue).
Adding the P15 small-scale polarization data (TEEE) results produces no
significant shift of the constraints. However, all external data sets shift the
constraints back to flatness, at the cost of increasing tension with the base
CMB measurements.

4.3.3 Flat �CDM+AL

Considering the highly significant tensions we find in the curved
�CDM model, we also investigate the consistency of the different
data sets with the base P15 CMB data in the flat �CDM+AL model.
We show our results in Fig. 2 (green bars in the right-hand panel)
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Table 4. Evidence ratio results for some of the data sets. ln R̂ denote the nu-
merical and ln R the analytic estimates respectively. 〈ln R〉 is the calibration 
of the evidence ratio and ln R − 〈ln R〉 the calibrated evidence ratio. ‘Sig’
stands for the significance (ln R − 〈ln R〉)/σ (ln R), where in one dimension
σ (ln R) = 1/

√
2. Note that contrary to the surprise values, in the case of

evidence ratios negative values indicate tension and positive values indicate
agreement.

Flat ln R̂ ln R 〈ln R〉 ln R − 〈ln R〉 Sig

H0 R16 −5.6 ± 1.9 −5.59 −2.13 −3.46 −4.89
H0 E14 −2.6 ± 0.3 −2.61 −2.65 0.04 0.06
SNe, flat 2.2 ± 0.2 2.28 1.89 0.39 0.54

Curved ln R̂ ln R 〈ln R〉 ln R − 〈ln R〉 Sig
H0 R16 −9.2 ± 3.7 −9.39 −3.01 −6.30 −8.90
H0 E14 −6.6 ± 1.5 −6.85 −3.22 −3.63 −5.13

Considering the calibrated evidence ratios ln R − 〈ln R〉 in Ta-
ble 4 we detect the same tensions as with the surprise (see Tables 3
and 6). Furthermore, the calibrated evidence ratio, which scatters
with σ (ln R) = 1/

√
2, have significances comparable to the signif-

icances of the surprise. We conclude that in these examples the two
measures of tension give very similar results, despite the fact that
they detect tensions in different ways, as discussed in Appendix B1.
This is reassuring for our primary results with the surprise estimated
after a Gaussianization process, and for the validity of the calibrated
evidence ratio, introduced here for the first time.

5 DI SCUSSI ON

In this section we consider three possible origins for the significant
tensions we detect between various data sets and the base P15 CMB
constraints. First, we discuss the fact that data sets could be affected
by systematic effects biasing their constraints; second, we explore
the impact on the base P15 CMB constraints of using a flat prior on
θMC instead of on H0 for the curved �CDM model; and finally, we
investigate the physical processes underlying the tensions measured
in parameter space.

5.1 Impact of systematics

Each of the data sets we consider might be affected by residual sys-
tematic uncertainties large enough to lead to tensions with others.
As shown elsewhere (Seehars et al. 2014, 2016), unresolved sys-
tematic uncertainties in the Planck half mission CMB data (Planck
Collaboration I 2014) resulted in highly significant tensions with
the CMB constraints from WMAP (Bennett et al. 2013; Hinshaw
et al. 2013), whereas the base P15 CMB constraints are in a far
better agreement with WMAP, which holds true also in a series of
extended models (see Grandis et al. 2016).

To check whether any systematic effect accounted for by the
Planck Collaboration might play a role in the 2.7σ deviation from
flatness, and the 2.3σ deviation from AL = 1, in the base P15 CMB
data, we show in Fig. 4 the constraints on the nuisance parameters
sampled by the Planck Collaboration with the largest variations
between the flat �CDM model (blue lines) and either the curved
�CDM (red) or the flat �CDM+AL (green) models. We find no
major shifts in the nuisance parameter constraints. Thus, treatment
of systematic effects in the base P15 CMB data appears stable
under these extensions and not responsible for the tensions reported
here. However, this does not exclude the possibility that there are
unresolved residual systematics in the P15 data.

Interestingly, the minor shifts induced by the curved �CDM and
flat �CDM+AL models are very similar. This hints at a similarity
in the way these two models impact the P15 CMB constraints, as
discussed in detail in Planck Collaboration I (2014) and Planck
Collaboration XIII (2015b, p. 29).

The resulting tensions could also come from the other probes. We
discuss the impact of different H0 measurements in Section 5.3. For
exhaustive discussions of the treatment of systematics in the data
sets employed here, we refer the reader to the literature referenced
in Section 3.

5.2 Effect of a prior choice

Another effect which could contribute to the preference for non-
flat models is the weight assigned to different regions of parameter
space by the priors used to sample the base P15 CMB constraints in
the curved �CDM model. The Planck Collaboration assumed flat

and Table 3. Contrary to the curved �CDM model, we find that all 
distance measures are in good agreement with the base P15 CMB 
constraints. In the case of the H0 measurement, we find that the 
significance of tension is reduced from 4.8σ in flat �CDM to 1.5σ 
in the flat �CDM+AL model. This is to some extent unsurprising, 
as these data sets do not directly constrain the additional parameter 
AL. But it is worth noting that leaving the AL parameter free in the 
CMB fit, does not change the constraints on the other parameters 
in a way that is inconsistent with the various distance measure data 
sets. Actually, it allows for higher values of H0, reducing the tension 
with the distance ladder measurements.

However, CMB lensing measurements are sensitive to the lensing 
of the CMB by construction. This data set shows a tension of 4σ with 
the base P15 CMB data. This tension is driven by the constraints 
on the lensing amplitude. As shown by the Planck Collaboration 
XIII (2015b, p. 24) the constraints from the base CMB (AL = 1.22
± 0.10) are shifted strongly when the CMB lensing data are added 
(AL = 1.04 ± 0.06). The latter is an indication that two data sets 
which are inconsistent with each other have been combined. We 
will discuss the underlying physical description of these constraints 
in Section 5.4.

4.4 Another independent measurement of tension

As a consistency check for our results, we also employ evidence ra-
tios. We compute the evidence ratios analytically (see Appendix B1) 
for those data sets and models where the likelihood of the data could 
be assumed to be a simple Gaussian. We use special care in cal-
ibrating the analytic evidence ratio ln R − 〈ln R〉, as discussed in  
Appendix B1. We also validate our analytic computations with nu-

merical estimates, ln R̂ (see Appendix B2), which allow us to relax 
the assumption of Gaussianity for the base P15 CMB likelihood. 
We summarize our findings in Table 4.

We find that the numerical evidence ln R̂ and the analytic evidence 
ln R agree. Importantly, in most of the cases we find that the expected 
evidence ratio 〈ln R〉 is very different from zero. Not accounting for 
the correct calibration can therefore lead to a serious mis-estimation 
of the degree of tension, as can be seen in the case of H0 E14 and 
SNe for flat �CDM. Both agree with the base P15 CMB data, as 
seen with both the surprise S and the calibrated evidence ratio ln R − 
〈ln R〉. However, just considering the evidence ratio ln R would have 
biased our conclusion, leading to an overestimation of the agreement 
in the case of SNe and an underestimation of the agreement in 
the case of H0 E14. We conclude from this simple example, that 
uncalibrated evidence ratios can be significantly biased, as discussed 
further in Appendix B1.
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Figure 4. Constraints on nuisance parameters of the base P15 CMB data in flat �CDM, curved �CDM, and flat �CDM+AL. For simplicity, we include only
the marginalized constraints on the parameters that display the largest changes with respect to the flat �CDM model. However, no major shifts are present in
these nuisance parameters. Interestingly, both extensions, free �K and AL, shift these constraints in a very similar manner.

Figure 5. In black, the marginalized contours of the base P15 CMB con-
straints in curved �CDM over plotting a colour-coded background of the
log10 of the prior weights, derived from flat priors on both �K and θMC.
Clearly, the prior puts more weight (up to 100.5 ∼ 3) on the low H0, neg-
ative �K tail of the degeneracy. The red contours are obtained by crudely
reweighting the sample (see equation 9), to make it correspond to flat priors
on �K and H0 instead.

priors on �K and θMC. In Fig. 5 we show the marginalized contours
of the base P15 CMB constraints on the H0, �K plane. To crudely
estimate the weight of the prior, we fix the other cosmological
parameters to their best-fitting values and compute θMC on a grid as
a function of H0 and �K using CAMB. We then numerically compute
the flat prior

p(H0, �K) =
∣∣∣∣∂(θMC, �K)

∂(H0, �K)

∣∣∣∣ p(θMC, �K) ∝
∣∣∣∣∂θMC

∂H0

∣∣∣∣ , (9)

where p(θMC, �K) is the prior on �K and θMC, which can be assumed
∝1, and |∂(θMC, �K)/∂(H0, �K)| stands for the determinant of the
Jacobian of the transformation (θMC, �K)�→(H0, �K), which can be
simplified to |∂θMC/∂H0|, the absolute value of the partial derivative

Table 5. Surprise values S and expected fluctuation σ for different data sets
added to the P15TT_lowTEB constraints in curved �CDM after accounting
for the reweighing due to the change between using a flat prior on H0 instead
of on θMC.

BAO CMB len. TEEE H0 SNe Ly α BAO

S 5.34 4.93 −1.23 6.57 2.49 0.73
σ 1.33 1.29 1.08 0.94 0.74 0.45
S/σ 4.02 3.82 −1.14 6.98 3.36 1.62

of θMC with respect to H0, evaluated at the relevant position in
parameter space.

We find that the original priors give more weight to regions
away from �K = 0, with up to a factor of ∼3 at the low end
of the degeneracy, as shown in Fig. 5. We also show there the
marginalized contours of the original (in black) and the reweighted
(in red) sample obtained from the former using equation (9). As
an effect of the reweighting, the deviation from flatness is reduced
from 2.7σ to 2.5σ . We also calculate numerically the impact of the
reweighting on the �DIC, finding that it is insignificant and that the
clear preference for curved �CDM is maintained.

In Table 5, we show the entropy results after reweighting. The
significances of the tensions are slightly lower than before reweight-
ing. This comes from the fact that the reweighting pushes the base
CMB constraints towards flatness and therefore to better agreement
with the other data sets. Nevertheless, as before, with the excep-
tion of Ly α BAO, all additional probes maintain more than 3σ

tension. Thus, we conclude that this change in the prior does not
resolve the tensions we find in curved �CDM because it reduces the
significances of the tensions and deviations only by ∼10 per cent.
However, it is worth noting that any choice of prior (even flat) in
parameter space can indeed introduce unintended preferences for
certain regions in this space.

5.3 CMB and distance ladder

The consistency between the Hubble rate inferred from the CMB
and distance ladder measurements is a popular and important topic
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Table 6. Surprises S and expected fluctuation σ for different H0 measure-
ments when added to the P15 TT_lowTEB constraints in flat, curved and 
flat �CDM+AL.

Flat �CDM Curved �CDM Flat �CDM+AL

R16 E14 R16 E14 R16 E14

S 1.11 0.01 7.36 3.74 0.57 −0.17
σ 0.23 0.08 0.94 0.75 0.37 0.17
S/σ 4.78 0.09 7.87 4.97 1.52 −1.00

in the recent literature (see for instance Verde et al. 2013, 2014;
Bennett et al. 2014; Riess et al. 2016). Since Planck Collaboration
XIII (2015b) adopted H E14

0 = 70.6 ± 3.3 km s−1 Mpc−1 (E14), we
repeat our analysis with this measurement and obtain the results
shown in Table 6 for the surprise. E14 agrees better with the base
P15 CMB constraints than R16 in all models we considered. For flat
�CDM, E14 is consistent with the CMB constraints, as also found
by Planck Collaboration XIII (2015b). Compared to previous results
from Riess et al. (2011) and Riess (2014), the tighter measurements
on H0 from R16 are however in significant tension with the P15
CMB constraints even for this simple model.

Interestingly, when we consider the curved �CDM model, all
distance ladder measurements show significant tensions with the
base P15 CMB constraints. The presence of the tension between
the P15 CMB constraints and the distance ladder measurements in
the curved �CDM model is thus independent of the specific H0

measurement we choose, although its significance varies (4.97 for
E14 and 7.87 for R16).

To reconcile the constraints on H0 from the CMB and the local
distance measures, a variety of mechanisms have been proposed,
including an increased Neff (Archidiacono et al. 2013; Di Valentino
et al. 2016b), phantom dark energy (Planck Collaboration I 2014;
Di Valentino, Melchiorri & Silk 2016a), or interacting dark energy
(Salvatelli et al. 2013; Costa et al. 2014). It is worth stressing that
here we find consistency between the H0 measurements from both
E14 and R16 with the base P15 CMB data in the flat �CDM+AL

model. Thus, contrary to models with free Neff or w 
= −1, a model
with AL > 1 is not only preferred by the CMB data alone but also

provides consistency between these data and all the local distance
measures (see additional discussion in Section 4.1).

5.4 Physical effects involved in the tensions

To investigate the physical effect causing the deviation from flat-
ness and AL = 1 in the base P15 CMB constraints, we compare the
theoretical predictions of the TT spectrum in flat, curved, and flat
�CDM+AL models. To do so, we draw random points from the
base P15 CMB samples in these models and compute the theoret-
ical expectation of the angular power spectrum of the temperature
anisotropies, C�, using CAMB. In Fig. 6 we show the fractional dif-
ferences with respect to the best-fitting values of C� in flat �CDM.
We find that the 1σ uncertainty on the flat �CDM prediction (blue
region) ranges from 4 per cent at low � to less than 1 per cent at high
�, underlining the impressive constraining power of the P15 CMB
measurements. For the distribution of the C� in the curved �CDM
model (in red), we find that above � ∼ 50 the TT spectra predicted
by both models are consistent with each other at the 1σ level and
within a 2 per cent fractional difference. However, at low � < 30
the curved model is able to predict noticeably less power than the
flat model. For the lowest �, the dipole term, the preferred curved
model predicts almost 20 per cent less power than the flat model.
As discussed elsewhere (Planck Collaboration XVI 2015f; Schwarz
et al. 2015, and references therein), the lack of power on large scales
is one of the anomalies observed in all CMB surveys, P15 included.
The 2.7σ deviation from flatness seems to be driven by these anoma-
lies and due to the ability of the curved model to predict less power
on large scales. Similarly, also the C�’s predicted in the model with
free AL are in excellent agreement with the flat �CDM prediction
above � ∼ 30. But also in this model, we find a lack of power on
large angular scales, although in a less pronounced way than in
the curved model. At low redshift, this can be achieved through
the Integrated Sachs–Wolfe (ISW) effect (see Sachs & Wolfe 1967;
Kofman & Starobinskij 1985; Planck Collaboration XIV 2015g).

However, as discussed by the Planck Collaboration XIII (2015b,
p. 38), the constraints on curvature can also come from an increase
of the lensing potential, which directly manifests itself as a devi-
ation of its amplitude AL > 1 (see Section 4.1, fig. 1 and p. 24 in
Planck Collaboration XIII 2015b). To investigate this possibility in

Figure 6. Left-hand panel: fractional differences between the flat �CDM best-fitting value of the TT power spectrum and those predicted by the constraints 
obtained in flat �CDM (blue), curved �CDM (red), and flat �CDM+AL (green). For multipole moments � < 30, the P15 temperature anisotropy measurements 
prefer less power than that predicted by flat �CDM. This lack of power is stronger in the curved model than in the model with free AL. Right-hand panel: 
CMB lensing power spectrum predictions from the base CMB constraints obtained in flat �CDM (blue), curved �CDM (red), and flat �CDM+AL (green). 
Remarkably, the curved and the flat �CDM+AL models predict very similar lensing power spectra, both larger than the prediction from flat �CDM.
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further detail, we compute the CMB lensing potential power spec-
trum C

φφ
� predicted by the base CMB constraints in flat �CDM,

curved �CDM and flat �CDM+AL. The results, together with the
1σ uncertainties, are shown in Fig. 6, where we show the predictions
of the CMB lensing power spectra for the flat (blue), curved (red)
and flat �CDM+AL (green) models. Remarkably, the curved and
the flat �CDM+AL models predict very similar C

φφ
� s, which are

about 2σ larger than those predicted by flat �CDM. From this we
conclude that both the deviation from flatness and the deviation
from AL might be sourced by the same anomaly in the CMB lensing
potentials. This might also be supported by the fact that the con-
straints on the nuisance parameters sampled by P15 are very similar
in these two models, as already noted in Section 5.1 (see Fig. 4).

Although the constraints on the CMB lensing potentials are very
similar for the curved and the flat �CDM+AL models and show
similar trends in the predicted temperature power spectrum, this
is not true for the predicted background evolutions. This manifests
itself in our tests of the curved model, where different distance mea-
surements are in significant tension with the CMB. We show that
considering the flat �CDM+AL model, the tensions between the
base P15 CMB and H0, SNe and BAO are considerably alleviated,
both compared to flat and curved �CDM. Thus, the consistency
of the CMB with distance measures in the flat �CDM+AL model
seems to suggest that a modification of the CMB lensing potential is
preferred to deviations from flatness. However, such modifications
to the CMB lensing potential should not only fit the CMB spectra
better, they should also be consistent with the CMB lensing mea-
surements, which we find to be in tension with the base CMB data
both in the curved and in the flat �CDM+AL models.

As shown in Acquaviva & Baccigalupi (2006, see also e.g.
Carbone et al. 2013), AL > 1 is naturally related to theories of mod-
ified gravity. Furthermore, the Planck Collaboration XIV (2015g)
reported that the base P15 CMB constraints on some classes of mod-
ified gravity models deviate more than 2σ from General Relativity.
Such models are found to fit the CMB data better than flat �CDM.
It would be interesting to see whether such models can reconcile
the CMB lensing measurements with the constraints from the base
P15 CMB data.

6 C O N C L U S I O N S

In this work we first investigate which model is preferred by the
CMB temperature and large scale polarization anisotropy measure-
ments of the Planck Collaboration (base P15 CMB; Planck Collab-
oration XIII 2015b). Applying the deviance information criterion
on the posterior samples made publicly available by the Planck Col-
laboration XIII (2015b), we find that the base P15 CMB constraints
present a strong preference for a �CDM model with free curvature,
�K, over the flat �CDM paradigm. This strong preference comes
from the fact that the curved model fits the CMB data at low multi-
poles (� < 30) better that the flat model, as reported by the Planck
Collaboration XIII (2015b, p. 38). We also find that the constraints
on �K deviate at a 2.7σ level from flatness (�K = 0). Furthermore,
we find that the base P15 CMB data prefer a model with a CMB
lensing potential amplitude AL 
= 1. In this model, the constraints
on the additional parameter AL are found to deviate from the flat
�CDM expectation (AL = 1) by 2.3σ . If this result is not due to
residual systematics in the data, our model selection analysis (see
Section 4.1) indicates that it represents a challenge to the standard
flat �CDM model.

To investigate whether there is concordance between different
measurements in these models, we consider the addition of exter-

nal data sets to the base P15 CMB constraints. We utilize the joint
constraints published by the Planck Collaboration XIII (2015b)
from measurements of the base P15 CMB together with CMB lens-
ing, CMB small-scale polarization, BAO, SNe, distance ladder or
Ly α forest BAO. To analyse these data sets, we simultaneously
Gaussianize the constraints from the base P15 CMB data and the
combined data sets, and obtain an analytic approximation to their
likelihood that enables the calculation of the entropy based measure
surprise (Seehars et al. 2014, 2016; Grandis et al. 2016) and a cal-
ibrated evidence ratio, as well as a more efficient evaluation of the
likelihood.

In the flat �CDM model, we find that all external data sets agree
with the base P15 CMB, except for the distance ladder measure-
ment performed by R16, which we find to be in 4.8σ tension. In
the curved �CDM model, which is clearly preferred by the base
P15 CMB data, we find significant tensions between the CMB and
distance ladder (7.9σ ), BAO (4.6σ ), CMB lensing (4.2σ ) and SNe
(3.8σ ) measurements. The curved model is thus unable to describe
these observations adequately. Given these high levels of tension,
these data sets should not currently be added to the base P15 CMB
constraints in the curved model until these inconsistencies can be
resolved. Considering instead a model with a free CMB lensing po-
tential amplitude AL, the base P15 CMB constraints are consistent
with the different distance measures, even resolving the tensions
between the CMB and distance ladder measurements. However, in
this model the CMB lensing measurements are still in about 4σ

tension with the base P15 CMB data.
Using a simple example, we also show the importance of accu-

rately calibrating the evidence ratio to have an unbiased assessment
of the consistency between two data sets. To validate our primary
measure of tension, we introduce the calibrated evidence ratio and
calculate its expected fluctuation. Applying this measure to some of
the data sets gives us significances of the tensions that are in good
agreement with those from the surprise.

We also discuss the possible effects driving the deviation from
flatness in the base P15 CMB constraints and therefore the tensions
of these data with different external data sets. Our examination
uncovers no evidence that these are due to systematics currently
accounted for in the CMB analysis; however, we cannot exclude that
these are due to unresolved, residual systematics. Also, the choice
of using a flat prior on θMC instead of H0 for the CMB analysis
introduces only a 10 per cent bias on the reported significances of
the deviations and tensions, and is thus insufficient to explain them.

We also compute the TT spectra predicted by the base CMB con-
straints in the flat model and in the preferred models with free curva-
ture and lensing amplitude. When comparing them to flat �CDM,
we find a lack of power on large scales of almost 20 per cent for
the curved, and 5 per cent for the +AL model, respectively. Large
scale lack of power has been consistently found in all CMB all-
sky surveys, and might source the deviation we find here. This
anomaly partially manifests itself as an increment of the CMB lens-
ing potential. Remarkably, both the curved and the flat �CDM+AL

models predict larger CMB lensing potentials than the flat �CDM
model. However, the curved model increases the lensing poten-
tials at the cost of altering the cosmological background in a way
that is incompatible with external distance measurements. On the
other hand, a model that impacts the CMB lensing potentials with-
out significantly changing the background expansion would allow
consistency between the base P15 CMB data and external distance
measurements. Such an alternative model should also be able to rec-
oncile the direct CMB lensing measurements with the constraints
coming from the temperature anisotropy power spectrum, which is
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not the case with the flat �CDM+AL model, as we have shown 
here. The important ongoing efforts in measuring the cosmic large 
scale structure in large survey projects such as, for example, DES6 

(DES Collaboration 2005), eROSITA7 (Merloni et al. 2012), 
EUCLID8 (Laureijs et al. 2011) and LSST 9 (LSST Science Col-
laboration 2009) will provide us with additional consistency checks 
among data sets while yielding tighter constraints that enable further 
systematic tests of alternative models to flat �CDM.
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APPENDIX A: GAUSSIANIZATION
P RO C E D U R E

Following Schuhmann et al. (2016), we compute a suite of op-
timized transformations to Gaussianize a distribution. We first
apply a linear transformation M, mainly to decorrelate strongly
degenerate parameters. Thereafter, we apply a BoxCox transforma-
tion to each dimension individually. A BoxCox transformation is
defined by

BC(a,λ)(x) =
{

1
λ

(x + a)λ − 1 if λ 
= 0

log(x + a) if λ = 0.
(A1)

The optimal transformation parameters are found by maximizing
the probability that the transformed sample is Gaussian. This trans-
formation is only defined for x + a > 0, so given an optimal a, the
transformation is not defined for all x. However, we always choose
a > max(−xi) for a sample xi such that the transformation is defined
for every point of the sample, but not in every point of parameter
space. For a sufficiently large sample, however, we can assume that
the value of the probability density distribution is arbitrarily close
to zero in regions without sample points.

After the first BoxCox transformation, we apply a principal com-
ponent analysis (PCA), re-centring the sample by its mean μPCA and
applying a linear transformation L−1 such that after the transforma-
tion the sample is standardized. The linear transformation can be
obtained from a Cholesky decomposition of the covariance matrix
CPCA = LLT .

After the PCA, we perform another family of transformations.
Inspired by Schuhmann et al. (2016), we apply an Arsinh transfor-
mation defined by

Arsinh(b,t)(x) =

⎧⎪⎨
⎪⎩

1
t

sinh(t(x − b)) if t > 0

x − b if t = 0
1
t
arsinh(t(x − b)) if t > 0.

(A2)

The transformation is applied again to each dimension individually.
The optimal transformation parameters are determined by maximiz-
ing the probability that the transformed sample is Gaussian, as done
by Schuhmann et al. (2016). The Arsinh transformation is helpful,
because it can transform away some excess kurtosis.

As the last transformation step, we apply again a BoxCox trans-
formation. At this point, for our cases the samples we consider are
well approximated by a Gaussian. Thus, we estimate the final mean
μfinal and the final covariance Cfinal. Table A1 summarizes the trans-
formations and the transformation parameters necessary in every
point.

The Gaussianization procedure gives an analytic approxima-
tion to the distribution from which the original sample has been
drawn. Any point in cosmological parameter space θ needs to be

Table A1. Summary of the transformations (trans.)
employed to Gaussianize a generic sample. We also
specify the transformation parameters (params.) for
each transformation. The index i runs from 1 to ndim,
which is the number of dimensions.

Trans. Params.

1st linear M

2nd BoxCox (a(1)
i , λ

(1)
i )

3rd PCA μPCA, CPCA

4th Arsinh (bi, ti)
5th BoxCox (a(2)

i , λ
(2)
i )

transformed by the transformations shown in Table A1, yielding
ψψψ = trans(θ). Then its likelihood can be approximated by us-
ing the expression derived by Sellentin & Heavens (2016), ac-
counting for the scatter introduced by estimating the covariance
of the sample. Using this method, we obtain analytic approx-
imations for the P15 CMB likelihood for the models we con-
sider. We make various of these products publicly available on
https://bitbucket.org/grandiss45/gaussianization/.

Optimising the above given suite of transformations to optimally
Gaussianize two samples allows one to jointly Gaussianize two dis-
tributions. A joint Gaussianization is theoretically not possible in
general, but for prior and posterior distributions, a joint Gaussian-
ization is feasible, because the posterior is generally better behaved
than the prior. This allows us to estimate the surprise and its signif-
icance analytically using equation (3).

A1 Test case

To provide an example of the Gaussianization procedure and com-
pute the accuracy with which we can estimate the significance of
tensions after Gaussianization, we construct the following test case.
We start from two Gaussian distributions, shown in the upper left
panel of Fig. A1, for which we can compute the significance of the
tension analytically. Applying a non-linear transformation different
from those in Table A1, we transform these samples to the degen-
erate constraints shown in the upper middle panel of the figure.
This transformation is defined as follows. Given the two compo-
nents of the original Gaussian samples, x1,2, we transform them
into y1 = x

β
1 (xα

2 + C) and y2 = x
β
1 /(xα

2 + C), where we choose α

= 1.1, β = 0.4, and C = 4. This transformation cannot be obtained
analytically from the Gaussianizing transformations and therefore
defines an interesting test case for the Gaussianization procedure.
Furthermore, this simple case has a clear similarity to the P15 CMB
constraints in the curved model.

As expected, the significance of the tension estimated from these
samples is highly inaccurate, because the estimation of the surprise
and its variance assumes that the distributions are Gaussian. In
fact, all entropy derived quantities are invariant under arbitrary
invertible parameter transformations, but our estimation assumes
that the samples are Gaussian. Besides statistical uncertainty due
to the finiteness of the samples, any systematic uncertainty in the
estimation of the surprise derives from the fact that the underlying
samples are not accurately described by Gaussian distributions.

By construction, after every Gaussianizing transformation, the
samples are more accurately described by Gaussians and conse-
quently the estimation of the significance is more accurate (see
Fig. A1). After applying all the transformations we choose to
perform (i.e. those in Table A1 with the exception of the first),
the fractional accuracy on the significance is 1.5 per cent. Note
that the final Gaussianized parameter space need not be equal to
that of the initial Gaussian distributions.

A2 Accuracy of the Gaussianization

To estimate the accuracy of the significances of the underlying
tensions of the cosmological constraints analysed in this work we
propose the following scheme.

As described above, the accuracy of the significance depends
solely on the degree to which the samples are well described by
Gaussians. A natural measure of how well a distribution p̂ describes
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Figure A1. Test case, illustrating the Gaussianization procedure. The upper left panel shows the original, Gaussian samples, for which the significance of
the tension S/σ can be computed analytically. By applying a non-linear mapping, these samples can be transformed into the degenerate constraints shown
in the upper middle panel. The subsequent panels (upper right, lower left, lower middle and lower right) show the samples after applying the Gaussianizing
transformations presented in Table A1 (except for the first). The final significance is very close to the correct, initial value, indicating that the samples are well
approximated by Gaussian distributions.

a sample X = {xi}, with i = 1, ..., N, where N is the length of the
sample, is given by the logarithmic score

H
p̂
X = 1

N

N∑
i=1

ln p̂(xi). (A3)

If the sample points are drawn independently, the logarithmic score
can be interpreted as the average log-likelihood that the sample X
has been drawn from p̂.10 Consequently, a higher logarithmic score
indicates a better fit.

For the case of the P15 CMB constraints in curved �CDM, la-
belled hereinafter pr for prior, and the joint constraints of P15 CMB
and CMB lensing data, labelled po for posterior, we define q̂ and
p̂, the approximations to the prior and posterior in the space of
parameters after the Gaussianization process, as Gaussian likeli-
hoods with means and covariances estimated from the transformed
samples. We then draw 2000 samples X pr and X po from q̂ and p̂,
respectively, and compute the logarithmic scores Hq̂ and Hp̂ . We
also evaluate the logarithmic scores of the original samples Hq̂

pr and
Hp̂

po. We find that

Hq̂
pr = −3.000 and 〈Hq̂〉 = −2.998 ± 0.007, (A4)

10 Given the likelihood L(xi |p̂) = p̂(xi ) that the sample points xi are drawn
independently from p̂, the likelihood that the sample X is drawn from p̂ is
L(X |p̂) = ∏

i p̂(xi ). Thus, ln L(X |p̂) = ∑
i ln p̂(xi ) = N H

p̂
X .

for the prior, and

Hp̂
po = −3.000 and 〈Hp̂〉 = −2.994 ± 0.006, (A5)

for the posterior. We note that for both, the prior and the posterior,
the Gaussian samples X pr,po on average fit better than the original
samples pr and po. The logarithmic scores, however, are consistent
with those of these Gaussian samples within the statistical uncer-
tainties of the sampling process. It is thus safe to assume that the
original samples are fitted by q̂ and p̂ to an accuracy consistent with
the statistical noise of samples of their size.

To evaluate how large the impact of this statistical sampling noise
is on the errors of estimating the significance, for each of the 2000
cases we estimate the significance S/σ of the tension between the
sample drawn from q̂ and the sample drawn from p̂. We find that the
average 〈S/σ 〉 = 4.23 ± 0.03. For the case of P15 CMB versus P15
CMB plus CMB lensing in curved �CDM we have from Table 3
that S/σ = 4.18. This implies an average absolute error of 0.05,
which corresponds to a fractional error of 1.1 per cent. Note that
this should be interpreted as a systematic error. For the other data
combinations and models, since this case is in no way special, we
expect similar results.

In summary, the Gaussianization process is successful within the
statistical uncertainties of the samples, and introduces systematic
errors of the order of only 1 per cent, thus allowing a robust inference
of the significance of an underlying tension.
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A P P E N D I X B : E V I D E N C E R AT I O S

It is common practice in cosmology to use ln R, as derived from
equation (4), to assess the agreement between two data sets D1 and
D2, and ln R = 0 is used as a reference point for such assessments.
However, ln R depends on D1 and D2, which themselves are random
variables, making also ln R a random variable. Consequently, in
this section we follow the reasoning of Seehars et al. (2016) and
for a class of likelihood models we propose a statistically well
motivated reference point. We also analyse the statistical scatter of
the measure ln R.

B1 Statistics in one dimension

We first consider a simple one dimensional model with a flat prior
p(θ ) and likelihood

L(Di | θ ) = 1√
2πs2

i

exp

(
−1

2

(
θ − Di

si

)2
)

for i = 1, 2, (B1)

where si are the uncertainties of the data sets. These likelihoods
are normalized in a way that E(Di) = 1. This model accurately
describes the constraints on H0 from the CMB and distance ladder
measurements used here both in flat and curved �CDM, and the
constraints of SNe and CMB on �M in flat �CDM.

In this setting, the joint distribution of the parameter θ and the
data sets D1, D2 is given by

p(θ, D1, D2) = 1

2π
√

s2
1s

2
2

exp

(
−1

2

(D1 − D2)2

s2
1 + s2

2

)

× exp

(
−1

2

(s2
1 + s2

2 ) (θ − μ)2

s2
1s

2
2

)
, (B2)

with μ = (s2
2 d1 + s2

1 d2)/(s2
1 + s2

2 ). Marginalizing the expression
(B2) over the parameter θ with the flat prior gives the joint evidence
of D1, D2 in the form

E(D1, D2) = 1√
2π (s2

1 + s2
2 )

exp

(
−1

2

(D1 − D2)2

s2
1 + s2

2

)
, (B3)

which illustratively is a Gaussian distribution of the difference
between the data sets �D = D1 − D2, with variance given
by the sum of the variances of the single data sets. Note also
that dividing equation (B2) by equation (B3) gives the poste-
rior distribution p(θ | D1, D2), which consistently has expected
value E[θ | D1, D2] = μ = (s2

2 d1 + s2
1 d2)/(s2

1 + s2
2 ) and variance

Var[θ | D1, D2] = s2
2s

2
1/(s2

1 + s2
2 ).

Using equation (B3) and equation (4) we can compute ln R ana-
lytically

ln R = −1

2

�D2

s2
1 + s2

2

− 1

2
ln

(
s2

1 + s2
2

) − 1

2
ln (2π ) . (B4)

From this expression, it becomes clear that perfectly agreeing data
sets (�D = 0) will have ln R < 0 to a degree depending mainly on
the measurement uncertainties. For example, one could obtain ln R
= −6, when comparing the two measurements D1 = D2 = 0 ± 114.
Using Jeffreys’ scale for the natural logarithm, we would describe
these results as the data sets being in ‘strong disagreement’, but in
fact the data could not agree better! This example should clarify
the importance of calibrating ln R correctly. In the same spirit as
that used to calibrate the relative entropy, we propose 〈ln R〉D1,D2 ,
the expected evidence ratio, as the reference point from which to
assess the agreement between two data sets. In our simple model

this quantity can be computed analytically as follows

〈ln R〉D1,D2 =
∫

dD1 dD2 E (D1, D2) ln R =

= −1

2
ln

(
s2

1 + s2
2

) − 1

2
ln (2π ) − 1

2
. (B5)

Combining equations (B4) and (B5), we find that the calibrated
evidence ratio is given by

ln R − 〈ln R〉D1,D2 = −1

2

�D2

s2
1 + s2

2

+ 1

2
, (B6)

which effectively cancels the second term of equation (B4), which
depends on the data set uncertainties. Applying this calibrated ev-
idence ratio to the previous example we find ln R − 〈ln R〉D1,D2 =
1/2, so a better agreement than statistically expected.

Equation (B6) also allows a direct comparison of the calibrated
evidence ratio and the surprise, because both are normalized and
have scatter around 0. There is, however, a subtle difference in the
way the surprise and the calibrated evidence ratio spot tensions
between two data sets D1, D2. The calibrated evidence ratio is a
symmetric measure of the consistency between the two data sets
in data space. It considers directly the square difference between
the data sets compared to the sum of their variances. The surprise
is not symmetric and acts in parameter space, as can be seen in
equation (3). Instead, it considers the agreement between
p(θ | D1, M) and p(θ | D2, D1, M), and assesses how probable the
difference between p(θ | D1, M) and p(θ | D2, D1, M) is. It goes
after the question: given D1, how probable is it that D2 shifts the
mean values of p(θ | D1, M) to the mean value of p(θ | D2,D1, M)?
Consequently, it is suited to test whether D2 should be added to the
constraints of D1, which is in general different from the question of
adding D1 to D2.

As with the surprise, we can also derive an expected fluctuation
of the calibrated evidence ratio σ (ln R)

σ 2(ln R) = 〈
(ln R − 〈ln R〉)2

〉
D1,D2

=

=
〈(

−1

2

�D2

s2
1 + s2

2

+ 1

2

)2
〉

D1,D2

= 1

2
. (B7)

Thus, in the previous example, the calibrated evidence ratio has
a significance 0.7σ . Calibrating and calculating the scatter of the
ln R for more general likelihoods and priors, however, might re-
quire costly numerical computations. For this reason, we prefer the
surprise as a measure of tension in the current analysis.

B2 Estimation for Gaussian likelihoods

For a Gaussian likelihood such as that in equation (B1), which
approximates the distance ladder measurements of H0 in flat and
curved �CDM and the SNe constraints on �M in flat �CDM, we
have E(D1) = 1. If we want to compute the evidence ratio between
these and the base P15 CMB data set, D2, we can use the fact that

R = E(D1, D2)

E(D1) E(D2)
= E(D1| D2) =

∫
dθ L(D1| θ ) p(θ |D2),

(B8)

where p(θ | D2) is the posterior derived from D2 (for a proof see
Seehars et al. 2016). Given a sample of p(θ | D2), and an analytic
expression for L(D1| θ ), equation (B8) can be estimated with Monte
Carlo Integration.
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B3 Calibrating evidence ratios in n dimensions

For completeness, we give here the n-dimensional generalization 
of the equations given in Appendix B1. Assume a linear likelihood
model for the data sets Di, i = 1, 2 given by

L(Di | θ ) = 1√
(2π )n det Σi

exp

(
−1

2
(θ − μi)

T Σ−1
i (θ − μi)

)
,

(B9)

where θ is the n-dimensional model parameter vector, μi a n-
dimensional vector depending linearly on the data set Di, and Σi

are symmetric n × n matrices, independent of the data set Di and
the model θ .

Integrating equation (B9) over a flat prior p(θ) = 1, we find
the evidence E(Di) = 1. Applying Bayes Theorem, we obtain the
posterior distributions p(θ | Di) = L(Di | θ ). Thus, μi is the mean
of the posterior p(θ | Di), and Σi its covariance.

Performing the same calculations as in the one dimensional case,
we find the joint evidence

E(D1, D2) = 1√
(2π )n det(Σ1 + Σ2)

× exp

(
−1

2
�μT (Σ1 + Σ2)−1�μ

)
. (B10)

where �μ = μ1 − μ2 is the difference in means of the posterior
distributions p(θ | D1,2). This form is a manifest generalization of

equation (B3). In the same way as described above, we can derive
the evidence ratio

ln R = −1

2
�μT (Σ1 + Σ2)−1�μ − n

2
ln 2π

− 1

2
ln det(Σ1 + Σ2). (B11)

We can thus confirm that also the n-dimensional evidence ratio
scatters around a term that depends on the covariance. To find the
correct zero-point, we need to calibrate it by subtracting its expected
value. This gives the n-dimensional calibrated evidence ratio

ln R − 〈ln R〉 = −1

2
�μT (Σ1 + Σ2)−1�μ + n

2
, (B12)

with a variance Var[ln R] = n/2.
Since the evidence is invariant under parameter transformations,

these quantities could be easily estimated after a joint Gaussianiza-
tion of the two independent posteriors p(θ |D1) and p(θ | D2). Here
we did not use this method because we had a simpler access to the
joint posteriors p(θ | D1, D2), which are in general better behaved
and thus easier to Gaussianize.
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