1,587 research outputs found
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors
We present an approach to experimentally evaluate gravity gradient noise, a
potentially limiting noise source in advanced interferometric gravitational
wave (GW) detectors. In addition, the method can be used to provide sub-percent
calibration in phase and amplitude of modern interferometric GW detectors.
Knowledge of calibration to such certainties shall enhance the scientific
output of the instruments in case of an eventual detection of GWs. The method
relies on a rotating symmetrical two-body mass, a Dynamic gravity Field
Generator (DFG). The placement of the DFG in the proximity of one of the
interferometer's suspended test masses generates a change in the local
gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Dark Matter: Introduction
This short review was prepared as an introduction to the Royal Society's
'Dark Matter' conference. It addresses the embarrassing fact that 95% of the
universe is unaccounted for. Favoured dark matter candidates are axions or
weakly-interacting particles that have survived from the very early universe,
but more exotic options cannot be excluded. Experimental searches are being
made for the 'dark' particles but we have indirect clues to their nature too.
Comparisons of data (from, eg, gravitational lensing) with numerical
simulations of galaxy formation can constrain (eg) the particle velocities and
collision cross sections.
The mean cosmic density of dark matter (plus baryons) is now pinned down to
be only about 30% of the critical density However, other recent evidence --
microwave background anisotropies, complemented by data on distant supernovae
-- reveals that our universe actually is 'flat', and that its dominant
ingredient (about 70% of the total mass-energy) is something quite unexpected
-- 'dark energy' pervading all space, with negative pressure. We now confront
two mysteries:
(i) Why does the universe have three quite distinct basic ingredients --
baryons, dark matter and dark energy -- in the proportions (roughly) 5%, 25%
and 70%?
(ii) What are the (almost certainly profound) implications of the 'dark
energy' for fundamental physics?Comment: 10 pages, 1 figure. Late
Stacking Gravitational Wave Signals from Soft Gamma Repeater Bursts
Soft gamma repeaters (SGRs) have unique properties that make them intriguing
targets for gravitational wave (GW) searches. They are nearby, their burst
emission mechanism may involve neutron star crust fractures and excitation of
quasi-normal modes, and they burst repeatedly and sometimes spectacularly. A
recent LIGO search for transient GW from these sources placed upper limits on a
set of almost 200 individual SGR bursts. These limits were within the
theoretically predicted range of some models. We present a new search strategy
which builds upon the method used there by "stacking" potential GW signals from
multiple SGR bursts. We assume that variation in the time difference between
burst electromagnetic emission and burst GW emission is small relative to the
GW signal duration, and we time-align GW excess power time-frequency tilings
containing individual burst triggers to their corresponding electromagnetic
emissions. Using Monte Carlo simulations, we confirm that gains in GW energy
sensitivity of N^{1/2} are possible, where N is the number of stacked SGR
bursts. Estimated sensitivities for a mock search for gravitational waves from
the 2006 March 29 storm from SGR 1900+14 are also presented, for two GW
emission models, "fluence-weighted" and "flat" (unweighted).Comment: 17 pages, 16 figures, submitted to PR
Inferring Core-Collapse Supernova Physics with Gravitational Waves
Stellar collapse and the subsequent development of a core-collapse supernova
explosion emit bursts of gravitational waves (GWs) that might be detected by
the advanced generation of laser interferometer gravitational-wave
observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from
core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct
evidence for the yet uncertain mechanism driving supernovae in massive stars.
Recent multi-dimensional simulations of core-collapse supernovae exploding via
the neutrino, magnetorotational, and acoustic explosion mechanisms have
predicted GW signals which have distinct structure in both the time and
frequency domains. Motivated by this, we describe a promising method for
determining the most likely explosion mechanism underlying a hypothetical GW
signal, based on Principal Component Analysis and Bayesian model selection.
Using simulated Advanced LIGO noise and assuming a single detector and linear
waveform polarization for simplicity, we demonstrate that our method can
distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc)
and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc.
Furthermore, we show that we can differentiate between models for rotating
accretion-induced collapse of massive white dwarfs and models of rotating iron
core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
Results from the First Science Run of the ZEPLIN-III Dark Matter Search Experiment
The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses
a 12kg two-phase xenon time projection chamber to search for the weakly
interacting massive particles (WIMPs) that may account for the dark matter of
our Galaxy. The detector measures both scintillation and ionisation produced by
radiation interacting in the liquid to differentiate between the nuclear
recoils expected from WIMPs and the electron recoil background signals down to
~10keV nuclear recoil energy. An analysis of 847kg.days of data acquired
between February 27th 2008 and May 20th 2008 has excluded a WIMP-nucleon
elastic scattering spin-independent cross-section above 8.1x10(-8)pb at
55GeV/c2 with a 90% confidence limit. It has also demonstrated that the
two-phase xenon technique is capable of better discrimination between electron
and nuclear recoils at low-energy than previously achieved by other xenon-based
experiments.Comment: 12 pages, 17 figure
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
- …
