134 research outputs found

    Heavy quasiparticles in the ferromagnetic superconductor ZrZn2

    Get PDF
    We report a study of the de Haas-van Alphen effect in the normal state of the ferromagnetic superconductor ZrZn2. Our results are generally consistent with an LMTO band structure calculation which predicts four exchange-split Fermi surface sheets. Quasiparticle effective masses are enhanced by a factor of about 4.9 implying a strong coupling to magnetic excitations or phonons. Our measurements provide insight in to the mechanism for superconductivity and unusual thermodynamic properties of ZrZn2.Comment: 5 pages, 2 figures (one color

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study

    Get PDF
    Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time

    Assessing free-living physical activity using accelerometry : practical issues for researchers and practitioners

    Get PDF
    Physical activity is an integral component of a healthy lifestyle, with relationships documented between physical activity, chronic diseases, and disease risk factors. There is increasing concern that many people are not sufficiently active to benefit their health. Consequently, there is a need to determine the prevalence of physical activity engagement, identify active and inactive segments of the population, and evaluate the effectiveness of interventions. The aim of the present study was to identify and explain a number of methodological and decision-making processes associated with accelerometry, which is the most commonly used objective measure of physical activity in child and adult research.Specifically, this review addresses:(a) pre-data collection decisions,(b) data collection procedures,(c) processing of accelerometer data, and(d) outcome variables in relation to the research questions posed.An appraisal of the literature is provided to help researchers and practitioners begin field-based research, with recommendations offered for best practice. In addition, issues that require further investigation are identified and discussed to inform researchers and practitioners of the surrounding debates.Overall, the review is intended as a starting point for field-based physical activity research using accelerometers and as an introduction to key issues that should be considered and are likely to be encountered at this time.<br /

    The effect of the UP4FUN pilot intervention on objectively measured sedentary time and physical activity in 10-12 year old children in Belgium: the ENERGY-project

    Get PDF
    <p>Abstract</p> <p>Bakckground</p> <p>The first aim was to examine the effect of the UP4FUN pilot intervention on children’s total sedentary time. The second aim was to investigate if the intervention had an effect on children’s physical activity (PA) level. Finally, we aimed to investigate demographic differences (i.e. age, gender, ethnicity, living status and having siblings) between children in the intervention group who improved in sedentary time and PA at post-test and children in the intervention group who worsened in sedentary time and PA at post-test.</p> <p>Methods</p> <p>The six weeks UP4FUN intervention was tested in a randomized controlled trial with pre-test post-test design with five intervention and five control schools in Belgium and included children of the 5<sup>th</sup> and 6<sup>th</sup> grade. The children wore accelerometers for seven days at pre- and post-test. Analyses included children with valid accelerometer data for at least two weekdays with minimum 10h-wearing time and one weekend day with 8h-wearing time.</p> <p>Result</p> <p>Final analyses included 372 children (60% girls, mean age = 10.9 ± 0.7 years). There were no significant differences in the change in sedentary time or light PA between intervention and control schools for the total sample or for the subgroup analyses by gender. However, children (specifically girls) in the intervention group had a higher decrease in moderate-to-vigorous PA than children in the control group. In the intervention group, children who lived with both parents and children with one or more siblings were less likely to reduce sedentary time after exposure to the intervention. Older children, girls and children who lived with both parents were less likely to increase light PA after the intervention.</p> <p>Conclusion</p> <p>The UP4FUN intervention did not result in an effect on children’s sedentary time. Based on the high amounts of accelerometer-derived sedentary time in this age group, more efforts are needed to develop strategies to reduce children’s sedentary time.</p

    Development and testing of the BONES physical activity survey for young children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight-bearing and high intensity physical activities are particularly beneficial for stimulating bone growth in children given that bone responds favorably to mechanical load. While it is important to assess the contribution and impact of weight-bearing physical activity on health outcomes, measurement tools that quantify and provide information on these activities separately from overall physical activity are limited. This study describes the development and evaluation of a pictorial physical activity survey (PAS) that measures children's participation and knowledge of high-intensity, weight-bearing ("bone smart") physical activity.</p> <p>Methods</p> <p>To test reliability, two identical sets of the PAS were administered on the same day to 41 children (mean age 7.1 ± 0.8 years; 63% female) and compared. To test validity, accelerometry data from 40 children (mean age 7.7 ± 0.8 years; 50% female) were compared to data provided by the PAS. Agreements between categorical and ordinal items were assessed with Kappa statistics; agreements between continuous indices were assessed with Spearman's correlation tests.</p> <p>Results</p> <p>The subjects produced reliable results in all 10 physical activity participation items (κ range: 0.36-0.73, all p < 0.05), but less reliable in answering if the physical activities were "bone smart" (κ range: -0.04-0.66). Physical activity indices, including metabolic equivalent time and weight-bearing factors, were significant in test-retest analyses (Spearman's <it>r </it>range: 0.57-0.74, all p < 0.001). Minutes of very vigorous activity from the accelerometer were associated with the self-reported weight-bearing activity, moderate-high, and high activity scores from the PAS (Spearman's <it>r </it>range: 0.47-0.48, all p < 0.01). However, accelerometer counts, counts per minute, and minutes of moderate-vigorous and vigorous activity were not associated with the PAS scores.</p> <p>Conclusions</p> <p>Together, the results of these studies suggest that the PAS has acceptable test-retest reliability, but limited validity for early elementary school children. This survey demonstrates a first step towards developing a questionnaire that measures high intensity, weight-bearing activity in schoolchildren.</p

    A calibration protocol for population-specific accelerometer cut-points in children

    Get PDF
    PurposeTo test a field-based protocol using intermittent activities representative of children\u27s physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity.MethodsTwenty-eight children (46% boys) aged 10&ndash;11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children\u27s play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities.ResultsCut-points of &le;372, &gt;2160 and &gt;4806 counts&bull;min&minus;1 representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96&ndash;97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89&ndash;99%) indicated that minutes of activity were seldom incorrectly classified as inactivity.ConclusionThe development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.<br /
    • …
    corecore